# Research of global optimization in machine Learning

# 기계 학습의 전역 수렴 분석 방법론

### Analysis Framework of global convergence in machine learning

 Next-Generation System SW Research Section, Future Computing Research Division, Artificial Intelligence Research Laboratory. Electronics and Telecommunications Research Institute (ETRI) Daejeon, Korea jnwseok@etri.re.kr

## Jinwuk Seok

2022.8.02

# Introduction

# Why should we analyze a global property in machine learning?

- Requirement of an algorithm with faster and better optimization performance
  - Requirement of a robust algorithm to Local minima
  - Robust algorithm to any initial points

### Is Global Optimization Possible in Machine Learning?

- Difficulty in Analysing method
  - Limitation of analysis on the Hilbert Space
  - It requires the analysis on a **normed (or measure-based) space** 
    - Requires heavily complicated analysis
    - Limitation of compactification method for an objective function
    - Entropy based objective function, KL-divergence
  - Limitations of Heuristic methods
  - Complication of Probability methods

### **Known Global Optimization Algorithms**

- Markov Chain Monte Carlo (MCMC)
  - Simulated Annealing
- Heuristic Algorithms
  - Evolutionary (Genetic) Algorithm, Particle Swarm Algorithms
- Quantum Computing (Qunatum Annealing)
- Baysian Optimization
- Quantization Based Optimization [3]

## What is the mathematical tools for global analysis.

- Topological Space used in the conventional analysis is not appropriate.
  - Analysis on **Hilbert space** (is not sufficient)
    - Inner product is main tools for analysis
    - Convex properties is not available.
  - Lipschitz Continuous is most important assumptions
    - Holder Continuous is Alternative tools
    - Pathewise continuous is another tools
    - Sobolev space and Lebesgue measurable space
    - At worst, we should analyse on **the Banach space**.

# Problems in the conventional analysis



#### **Convex Assumption**

• Assume that

$$egin{aligned} &\exists m, M \in \mathbf{R}^+ \quad ext{such that} \quad m \leq \left\| rac{\partial^2 f}{\partial x^2} 
ight\| < M \end{aligned}$$
, where  $\left\| rac{\partial^2 f}{\partial x^2} 
ight\|$  is defined as  $orall v \in \mathbf{R}^n \; ext{ such that } \; \|v\| = 1, \quad \left\| rac{\partial^2 f}{\partial x^2} 
ight\| riangleq \langle v, rac{\partial^2 f}{\partial x^2} v 
angle.$ 

 $orall x_t \in \mathbf{R}^n$  , we set the learnig equation as follows :

$$x_{t+1} = x_t + arepsilon h(x_t)$$

with the directional derivative  $h(x_t) = abla f(x_t)$ , and the learnig rate  $arepsilon \in \mathbf{R}(0,1)$ .

$$egin{aligned} f(x_{t+1}) - f(x_t) &= \langle 
abla f(x_t), arepsilon h(x_t) 
angle + \int_0^1 (1-s) \langle arepsilon h(x_t), rac{\partial^2 f}{\partial x^2} arepsilon h(x_t) 
angle \ &\leq -arepsilon \| 
abla f(x_t) \|^2 + rac{M}{2} arepsilon^2 \| 
abla f(x_t) \|^2 ds \ &= rac{M}{2} \| 
abla f(x_t) \|^2 arepsilon \left( arepsilon - rac{2}{M} 
ight) < 0, \quad \therefore 0 < arepsilon < rac{2}{M} \end{aligned}$$

- For the concave case such that the eigen-value of the Hessian of the objective function f(x) is negative,
  - The equation (4) is not no more hold.
  - $\circ$  In other words,  $\exists m, M \in \mathbf{R}^+$  such that  $-M \leq \left\| rac{\partial^2 f}{\partial x^2} 
    ight\| < -m$

$$egin{aligned} f(x_{t+1}) - f(x_t) &= \langle 
abla f(x_t), arepsilon h(x_t) 
angle + \int_0^1 (1-s) \langle arepsilon h(x_t), rac{\partial^2 f}{\partial x^2} arepsilon h(x_t) 
angle ds \ &\leq -arepsilon \| 
abla f(x_t) \|^2 - rac{m}{2} arepsilon^2 \| 
abla f(x_t) \|^2 \ &= -rac{m}{2} \| 
abla f(x_t) \|^2 arepsilon \left( arepsilon + rac{2}{m} 
ight) < 0, \quad \therefore arepsilon < -rac{2}{m} ext{ or } arepsilon > 0 \end{aligned}$$

- The above analysis shows the analysis result for the input on the concave domain is the equal to the convex case.
- Most of all, the analysis under the convex assumption cannot provide any information of global optimization.
  - Limitation of the analysis on the Hilbert Space

### Approaching the Analysis of the Global Optimization

#### Analysis on a measurable space

- Analysis of a Hilbert space under the convex assumption is a comparison on a scalar field.
  - In other words, it is the comparison with norms.
- Through the analysis on a normed space or measurable space, we can overcome the limitation of analysis on a conventional Hilbert space.
- Representative Measurable Space
  - Banach Space
  - Probability Space
    - By ergodicity, the analysis of time-invariant big data and the analysis of a stochastic process can be equal.
    - Compared to other analysis methodology, there is a lot of well-known mathematical analysis technique.

#### Limitaion of Hilbert Space based Analysis : for Instance

• Consider the following learning equation amended with other momentum or reinforcement term.

$$x_{t+1} = x_t + arepsilon h(x_t) + \lambda g(t)$$

- Let the following assumptions for convenice in anaysis.
  - $\circ \,$  There exists a positive value lpha such that  $lpha \|g(t)\| < \|h(x_t)\|, \ orall x_t \in \mathbf{R}^n, ext{and} \ t \in \mathbf{R}^+.$
  - $\circ\,$  There exists a positive value  $\eta$  such that  $arepsilon > \eta\lambda.$

 $\circ\;$  The learning rate  $arepsilon\in \mathbf{R}(0,rac{1}{M})$ 

• For the above learning equation, there exists a hill-climbing effect caused by the condition  $o(M) < -(\varepsilon - \frac{1}{M})^2$  such that  $f(x_{t+1}) - f(x_t) > 0$  under the convex assumption.

$$egin{aligned} f(x_{t+1}) - f(x_t) &< rac{M}{2} \| 
abla f(x_t) \|^2 \left( \left(arepsilon - rac{1}{M} 
ight)^2 + o(M) 
ight) \ &dots \exists M > 0, ext{ such that } o(M) < rac{\lambda^2}{lpha^2} \cdot C_0 \end{aligned}$$

• For a Concave case, if  $o(m) > (\varepsilon + rac{1}{m})^2$ , there exists the hill-climbing such that  $f(x_{t+1}) - f(x_t) > 0$ , as follows:

$$egin{aligned} f(x_{t+1})-f(x_t) < &-rac{m}{2} \|
abla f(x_t)\|^2 \left( \left(arepsilon+rac{1}{m}
ight)^2 - o(m^2) 
ight) \ dots \exists m>0, ext{ such that } o(m)>0 \end{aligned}$$

- However, both analyses only provide the existence of hill-climbing.
- The above analysis cannot provide any information on the global property.
  - Since the function  $o(\cdot)$  can be varied by a learning equation, it would be possible to analyze the global properties in more detail.

#### **Concept of Analysis on Measurable Space : Weak Convergence**



• Let 
$$D_k = \{x|f(x) - f(x_k) \leq 0\}$$
 $\Omega \supset D_1 \supset D_2 \cdots \supset D_\infty \supseteq X^*,$ 

 $\circ\,$  Let a (Lebesgue) measure m for  $D_k$ . Then, we obtain

$$1=m(\Omega)>m(D_1)>m(D_2)\dots>m(D_\infty)=\delta(x-x^*)$$

- The measure of the domain to a specific level set should be converged to the  $\delta(x)$  function, as presented in the figure.
- In addition, prove the equality of the measure to the level set at different points.

$$egin{aligned} &orall x, y \in D(x^*), \ x 
eq y \ &|m(\{y|f(y) - f(x^*) \leq 0\}) - m(\{x|f(x) - f(x^*) \leq 0\})| = 0 \end{aligned}$$

• In other words, if we prove the **Weak Convergence** of an algorithm, it provides the **Global Convergence** of the algorithm.

# Practical Perspective : Ananlysis on Probability Space

- To hold generality, we introduced a Lebesgue measure previously.
- However, to analyze a practical algorithm, we employ the **probability measure**.
  - Practically, since an algorithm processes data sequentially, we can regard the processed data as a stochastic process with ergodicity.
  - $\circ\,$  Therefore, we can do an analysis on filtration  ${\cal F}_t,\;t\geq 0$  on a  $\sigma$ -Algebra  ${\cal F}_t$ .
  - Additionally, the topology for analysis is **Probability Space**  $(\Omega, \mathcal{F}, P)$ . (or  $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ )
- Merit of analysis on probability space.
  - We can use many mathematical tools.
    - Many Probability Inequalities (such as Holder inequality, Markov inequality, and so on.)
    - Stochastic and Geometric Calculus
  - We construct machine learning or artificial intelligence based on neural networks on probability assumptions.

#### Laplace's Method

Let Q be a fixed probability measure on  $(\Omega, \mathcal{F})$ , and f is a continuous function on a compact set  $\Omega \subset \mathbb{R}^n$  with the following assumption :

$$Q\{x|f(x)-a<0\}, ext{ if }a> \inf_x f(x).$$

- A set N is related to f by  $N = \{x | f(x) = \inf_y f(y)\}.$
- When there exists a probability P on N, Laplace's method is interpreted as weak convergence of probability measure [1].

$$\lim_{ au o \infty} \sup_{x_t, x_{t+ au} \in \mathbf{R}^n} \left| p(t, ar{x}_t, t+ au, x^st) - p(t, x_t, t+ au, x^st) 
ight| = 0$$

 For an instance of Laplace's method, suppose that a Radon-Nycodym derivative is given as follows

$$m^ heta(x)dx riangleq rac{dP_ heta}{dQ}(x) = \exp\left(-rac{f(x)}{ heta}
ight) \left(\int_\Omega \exp\left(-rac{f(x)}{ heta}
ight) dQ(x)
ight)^{-1}$$

 $\circ\;$  Then,  $P_ heta
ightarrow P$  as  $heta\downarrow 0$ , we say it as  $P_ heta$  converges weakly.

- This weak convergence is known as  $P_{\theta}$  is tight.
- If  $P_{\theta}$  is tight, f(x) has a unique minimizer on a given domain, when f(x) is strongly convex around the global minimzer such that

$$\lim_{ heta \downarrow 0} \int_\Omega f(x) m^ heta(x) dx = \int_\Omega f(x) m^0(x) dx = f^* < f(x), \ orall x \in \Omega$$

- Generally, Q is regareded as a normal distribution.
- P is the distribution derived by an optimization algorithm.
- Recently, Laplace method is said to be the minima distribution [2].

#### **Stochastic Calculus**

- To use Laplace's method, the analysis requires a **stochastic model for an algorithm**.
  - Langevine stochastic differential equation (SDE) model

$$dX_t = -\varepsilon \cdot \nabla f(X_t) dt + \sigma(t) \sqrt{G} dW_t$$

• Geometrical stochastic differential equation (SDE) model

$$dX_t = -arepsilon \cdot 
abla f(X_t) dt + \sigma 
abla f(X_t) dW_t$$

• The coefficient of stochastic differential  $\sqrt{G}$  in Langevine SDE appears as  $\sqrt{
abla f(x_t)\otimes 
abla f(x_t)}\sim 
abla f(x_t)$ . (NTK or Natural Gradient?)

- Generally, Langevine SDE model is appropriate to analyze and implement.
  - Many algorithms for global optimization, such as simulated annealing, quantum annealing, and genetic algorithm, follows Langevine SDE.
    - GAN
    - Baysian optimization
    - analysis of machine learning applied motion pictures
  - By **Girsanov Theorem**, we can analyze the statistics and probability distribution of a learning algorithm.
- Geometrical SDE model easily analyzes the dynamics of the stochastic process.
  - Using Martingale analysis, we can analyze the dynamics of the random process itself.
  - Analysis of Momentum based Learning equation

$$X_t = X_0 \exp\left(-arepsilon 
abla f(x) - rac{\sigma^2}{2}
ight)t + \sigma W_t$$

#### **Girsanov Theorem**

- Stochastic Calculus Version of Radon-Nykodym Derivative
- To obtain the distribution of the continuous stochastic process  $\{X_t\}_{t=0}^{\infty}$ represented with an SDE.
  - There must be a **comparable stochastic process** such as **Wiener Process**.
  - It means that the probability of the process represented with an SDE process is a Radon-Nykodym derivative concerning the Wiener process with Gaussian distribution.

### Example

• Suppose that the SDE of learning Equation is as follows:

$$dX_s = -
abla f(X_s)ds + \sigma(s)\sqrt{G}dW_s, \; s\in {f R}(t,t+1).$$

• If the SDE of a standard Wiener Process is

$$dar{X}_s=\sigma(s)\sqrt{G}dW_s,\quad s\in {f R}(t,t+1),$$

• we get the distribution of the learning equation by Girsanov theorem, as follows:

$$rac{dP_x}{dQ_x} = \exp\left\{-\int_t^{t+1} rac{G^{-1}}{\sigma^2(s)} 
abla_x f(X_s), dar{X}_s - rac{1}{2}\int_t^{t+1} rac{G^{-1}}{\sigma^2(s)} \|
abla_x f(X_s)\|^2 ds
ight\}.$$

7

#### Frame work of Global Analysis based on Probability Space

- Fundamental Assumption
  - Lipschitz Continuous

$$\|
abla f(w_s)-
abla f(x^*)\|\leq L'\|w_s-x^*\|,\quad orall s>0.$$

• SDE of Learning equation

$$dX_s = -
abla f(X_s) ds + \sigma(s) \sqrt{G} dW_s, \; s \in {f R}(t,t+1).$$

• Set a standard Wiener process for the Girsanov theorem as follows:

$$dar{X}_s=\sigma(s)\sqrt{G}dW_s,\quad s\in {f R}(t,t+1).$$

• Girsanov Theorem

$$rac{dP_x}{dQ_x} = \exp\left\{-\int_t^{t+1}rac{G^{-1}}{\sigma^2(s)}
abla_x f(X_s), dar{X}_s - rac{1}{2}\int_t^{t+1}rac{G^{-1}}{\sigma^2(s)}\|
abla_x f(X_s)\|^2 ds
ight\}$$

- Analysis based on Calculus
  - Calculate supremum of the first and the second terms in the above Radon-Nykodym equation such that

$$\left\|\int_{-t}^{t+1} \frac{G^{-1}}{\sigma(s)} \nabla_x f(X_s) d\bar{X}_s\right\| \leq \frac{C_1}{\sigma(s)}, \ \frac{1}{2} \left\|\int_{-t}^{t+1} \frac{G^{-1}}{\sigma^2(s)} \|\nabla_x f(X_s)\|^2 ds\right\| \leq \frac{C_2}{2\sigma^2(s)}$$

, where  $C_1, C_2$  is a constant by the analysis of an algorithm

• Apply the supremums of each term to the Girsanov equation such that

$$rac{dP_w}{dQ_w} \geq \exp\left(-rac{1}{\sigma(s)}\left(C_1+rac{C_2}{2\sigma(s)}
ight)
ight) \geq \exp\left(-rac{C_3}{\sigma(s)}
ight) \because C_3 > 2\sigma(0)C_2 + C_3$$

• Consequently, for any arepsilon>0 and  $x_t,\;x^*\in {f R}^n$ , the infimum of  $P_x(|X_{t+1}-x^*|<arepsilon)$  is

$$P_x(|X_{t+1}-x^*|$$

where  $Q_x$  is a gaussian distribution by the standard Wiener process assumption.

- Proof of Convergence with Laplace's Method
  - $\circ\,$  Let the infimum of the transition probability from t to t+1 such that

$$egin{aligned} &\inf_{x,y\in\mathbf{R}^n} p(t,x,t+1,y) igg|_{x=x_t,\ y=x^*} \ &= \inf_{x,y\in\mathbf{R}^n} \lim_{arepsilon o 0} rac{1}{arepsilon} P_x(|X_{t+1}-x^*|$$

- $\circ$  Evaluate the infimum of  $Q_x$  deriven by an algorithm.
- With a limitation lemma of the difference to the transition probability such that

$$egin{aligned} &\lim_{t o\infty} \sup_{w\in [0,1]^n} |p(s,v,t,x^*) - p(s,w,t,x^*)| \ &= 2\cdot \|x^*\|_\infty \prod_{k=0}^\infty (1-\inf_{x,y\in \mathbf{R}^n} p(s+k,x_t,s+k+1,x^*)), \ &orall x\in D_0\subset \mathbf{R}^n, s\geq 0 \end{aligned}$$

, we can prove the global convergence of an algorithm.

# **Examples : Global Optimization**

- Parabolic Washboard Potential Function
  - The test function for comparison between quantum annealing and simulated annealing



- Travelling Salesman Problem
  - Representative Np-Hard Problem
  - The algorithm without the proof of global optimization cannot show better performance than the Nearest Neighborhood algorithm.



# Conclusion

| cities                   | NN(Initial)                              | SA                                       | QA                                      | QZ                                       | Improve ratio                   |
|--------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------|
| 100<br>125<br>150<br>175 | 2159.27<br>2297.86<br>2497.65<br>2380.52 | 1727.44<br>2027.52<br>2255.15<br>2380.52 | 1729.69<br>2028.2<br>2252.82<br>2380.29 | 1706.53<br>1923.65<br>2032.21<br>2147.17 | 20.96<br>16.28<br>18.63<br>9.80 |
| 200                      | 2769.73                                  | 2769.34                                  | 2769.42                                 | 2366.72                                  | 14.55                           |



- The proof of global optimization is the proof of optimization after Hill-Climbing.
  - The conventional analysis of Hilbert space provides the divergence of the algorithm involving the Hill-Climbing.
  - Additionally, the proof of asymptotic convergence requires diminishment of a Hill-Climbing effect.

- Development of an algorithm for global optimization
  - Conventional research of global optimization is based on Monte-Carlo sampling
    - Or additional noise such as GAN and Bayesian Optimization
  - Such as quantization or quantum computing, using uncertainty in the domain may be effective for global optimization. - Optimization algorithm based on number theory.
- Development of global optimization on the differential manifold.
  - There is a lot of new research after failure on stochastic filtering on the differential manifold.
  - Requirement of Wiener Proces on tangent space for learning equation.
  - Researching the global optimization based on a combination of gradient replacing a Hessian
    - NTK and Natural Gradient are so effective? Sufficient?

# References

 [1] Chii-Ruey Hwang. "Laplace's Method Revisited: Weak Convergence of Probability Measures." Ann. Probab. 8 (6) 1177 - 1182, December, 1980.
 https://doi.org/10.1214/aop/1176994579

[2] Xiaopeng Luo, "Minima distribution for global optimization", 2018, arXiv:1812.03457

[3] Seok, J. and Kim, J.-S., Nonlinear optimization algorithm using monotonically increasing quantization resolution, *ETRI Journal* (2022), 1–12. https://doi.org/10.4218/etrij.2021-0320 Thank you