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Introduction

Why should we analyze a global property in machine learning?

Requirement of an algorithm with faster and better optimization performance
Requirement of a robust algorithm to Local minima
Robust algorithm to any initial points

Is Global Optimization Possible in Machine Learning?

Difficulty in Analysing method
Limitation of analysis on the Hilbert Space
It requires the analysis on a normed (or measure-based) space

Requires heavily complicated analysis

Limitation of compactification method for an objective function
Entropy based objective function, KL-divergence

Limitations of Heuristic methods
Complication of Probability methods

2



Known Global Optimization Algorithms

Markov Chain Monte Carlo (MCMC)
Simulated Annealing

Heuristic Algorithms
Evolutionary (Genetic) Algorithm, Particle Swarm Algorithms

Quantum Computing (Qunatum Annealing)
Baysian Optimization
Quantization Based Optimization [3]

What is the mathematical tools for global analysis.

Topological Space used in the conventional analysis is not appropriate.
Analysis on Hilbert space (is not sufficient)

Inner product is main tools for analysis

Convex properties is not available.
Lipschitz Continuous is most important assumptions

Holder Continuous is Alternative tools
Pathewise continuous is another tools
Sobolev space and Lebesgue measurable space

At worst, we should analyse on the Banach space.
3



Problems in the conventional analysis
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Convex Assumption

Assume that

∃m,M ∈R such that m ≤ < M

, where  is defined as

∀v ∈R such that ∥v∥ = 1, ≜ ⟨v, v⟩.

∀x ∈R  , we set the learnig equation as follows :

x = x + εh(x )

with the directional derivative h(x ) = −∇f(x ), and the learnig rate ε ∈ R(0, 1).
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For the concave case such that the eigen-value of the Hessian of the objective
function f(x) is negative,

The equation (4) is not no more hold.

In other words, ∃m,M ∈R such that − M ≤ < −m

The above analysis shows the analysis result for the input on the concave
domain is the equal to the convex case.

Most of all, the analysis under the convex assumption cannot provide any
information of global optimization.

Limitation of the analysis on the Hilbert Space
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Approaching the Analysis of the Global Optimization

Analysis on a measurable space

Analysis of a Hilbert space under the convex assumption is a comparison on a
scalar field.

In other words, it is the comparison with norms.
Through the analysis on a normed space or measurable space, we can overcome
the limitation of analysis on a conventional Hilbert space.

Representative Measurable Space
Banach Space
Probability Space

By ergodicity, the analysis of time-invariant big data and the analysis of a
stochastic process can be equal.
Compared to other analysis methodology, there is a lot of well-known
mathematical analysis technique.
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Limitaion of Hilbert Space based Analysis : for Instance

Consider the following learning equation amended with other momentum or
reinforcement term.

x = x + εh(x ) + λg(t)

Let the following assumptions for convenice in anaysis.

There exists a positive value α such that 
α∥g(t)∥ < ∥h(x )∥, ∀x ∈R , and t ∈R .

There exists a positive value η such that ε > ηλ.

The learning rate ε ∈ R(0, )

For the above learning equation, there exists a hill-climbing effect caused by the
condition o(M) < − ε −  such that f(x ) − f(x ) > 0 under the
convex assumption.
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For a Concave case, if o(m) > ε + , there exists the hill-climbing such that 
f(x ) − f(x ) > 0, as follows:

However, both analyses only provide the existence of hill-climbing.

The above analysis cannot provide any information on the global property.

Since the function o(⋅) can be varied by a learning equation, it would be
possible to analyze the global properties in more detail.
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Concept of Analysis on Measurable Space : Weak Convergence
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Let D = {x∣f(x) − f(x ) ≤ 0}

Ω ⊃ D ⊃ D ⋯ ⊃ D ⊇ X ,

Let a (Lebesgue) measure m for D . Then, we obtain

1 = m(Ω) > m(D ) > m(D ) ⋯ > m(D ) = δ(x − x )

The measure of the domain to a specific level set should be converged to the δ(x)
function, as presented in the figure.

In addition, prove the equality of the measure to the level set at different points.

In other words, if we prove the Weak Convergence of an algorithm, it provides the
Global Convergence of the algorithm.
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Practical Perspective : Ananlysis on Probability Space

To hold generality, we introduced a Lebesgue measure previously.

However, to analyze a practical algorithm, we employ the probability measure.

Practically, since an algorithm processes data sequentially, we can regard the
processed data as a stochastic process with ergodicity.
Therefore, we can do an analysis on filtration F , t ≥ 0 on a σ-Algebra F .

Additionally, the topology for analysis is Probability Space (Ω,F ,P ). (or 
(Ω,F ,F ,P ))

Merit of analysis on probability space.

We can use many mathematical tools.
Many Probability Inequalities (such as Holder inequality, Markov
inequality, and so on.)
Stochastic and Geometric Calculus

We construct machine learning or artificial intelligence based on neural
networks on probability assumptions.

t

t
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Laplace's Method

Let Q be a fixed probability measure on (Ω,F), and f  is a continuous function on a
compact set Ω ⊂R  with the following assumption :

Q{x∣f(x) − a < 0}, if a > f(x).

A set N  is related to f  by N = {x∣f(x) = inf f(y)}.

When there exists a probability P  on N  , Laplace's method is interpreted as weak
convergence of probability measure [1].
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For an instance of Laplace's method, suppose that a Radon-Nycodym derivative is
given as follows

m (x)dx ≜ (x) = exp − exp − dQ(x)

Then, P → P  as θ ↓ 0, we say it as P  converges weakly.

This weak convergence is known as P  is tight.

If P  is tight, f(x) has a unique minimizer on a given domain, when f(x) is
strongly convex around the global minimzer such that

f(x)m (x)dx = f(x)m (x)dx = f < f(x), ∀x ∈ Ω

Generally, Q is regareded as a normal distribution.

P  is the distribution derived by an optimization algorithm.

Recently, Laplace method is said to be the minima distribution [2].
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Stochastic Calculus

To use Laplace's method, the analysis requires a stochastic model for an
algorithm.

Langevine stochastic differential equation (SDE) model

dX = −ε ⋅ ∇f(X )dt + σ(t) dW

Geometrical stochastic differential equation (SDE) model

dX = −ε ⋅ ∇f(X )dt + σ∇f(X )dW

The coefficient of stochastic differential  in Langevine SDE appears as 
∼ ∇f(x ). (NTK or Natural Gradient?)
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Generally, Langevine SDE model is appropriate to analyze and implement.

Many algorithms for global optimization, such as simulated annealing,
quantum annealing, and genetic algorithm, follows Langevine SDE.

GAN
Baysian optimization

analysis of machine learning applied motion pictures
By Girsanov Theorem, we can analyze the statistics and probability
distribution of a learning algorithm.

Geometrical SDE model easily analyzes the dynamics of the stochastic process.

Using Martingale analysis, we can analyze the dynamics of the random process
itself.
Analysis of Momentum based Learning equation

X = X exp −ε∇f(x) − t + σWt 0 (
2
σ2

) t
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Girsanov Theorem

Stochastic Calculus Version of Radon-Nykodym Derivative

To obtain the distribution of the continuous stochastic process {X }
represented with an SDE.

There must be a comparable stochastic process such as Wiener Process.
It means that the probability of the process represented with an SDE process is
a Radon-Nykodym derivative concerning the Wiener process with Gaussian
distribution.

Example

Suppose that the SDE of learning Equation is as follows:

dX = −∇f(X )ds + σ(s) dW , s ∈ R(t, t + 1).

If the SDE of a standard Wiener Process is

d = σ(s) dW , s ∈ R(t, t + 1),

we get the distribution of the learning equation by Girsanov theorem, as follows:

= exp − ∇ f(X ), d − ∥∇ f(X )∥ ds .
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Frame work of Global Analysis based on Probability Space

Fundamental Assumption

Lipschitz Continuous

∥∇f(w ) − ∇f(x )∥ ≤ L ∥w − x ∥, ∀s > 0.

SDE of Learning equation

dX = −∇f(X )ds + σ(s) dW , s ∈ R(t, t + 1).

Set a standard Wiener process for the Girsanov theorem as follows:

d = σ(s) dW , s ∈ R(t, t + 1).

Girsanov Theorem

= exp − ∇ f(X ), d − ∥∇ f(X )∥ ds .
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Analysis based on Calculus

Calculate supremum of the first and the second terms in the above Radon-
Nykodym equation such that

, where C ,C  is a constant by the analysis of an algorithm

Apply the supremums of each term to the Girsanov equation such that

≥ exp − C + ≥ exp − ∵ C > 2σ(0)C + C

Consequently, for any ε > 0 and x , x ∈R , the infimum of 
P (∣X − x ∣ < ε) is

P (∣X − x ∣ < ε) ≥ exp − Q (∣X − x ∣ < ε).

where Q  is a gaussian distribution by the standard Wiener process assumption.
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Proof of Convergence with Laplace's Method

Let the infimum of the transition probability from t to t + 1 such that

Evaluate the infimum of Q  deriven by an algorithm.

With a limitation lemma of the difference to the transition probability such
that

, we can prove the global convergence of an algorithm.
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Examples : Global Optimization

Parabolic Washboard Potential Function
The test function for comparison between quantum annealing and simulated
annealing
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Travelling Salesman Problem
Representative Np-Hard Problem

The algorithm without the proof of global optimization cannot show better
performance than the Nearest Neighborhood algorithm.
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Conclusion

The proof of global optimization is the proof of optimization after Hill-Climbing.
The conventional analysis of Hilbert space provides the divergence of the
algorithm involving the Hill-Climbing.
Additionally, the proof of asymptotic convergence requires diminishment of
a Hill-Climbing effect.
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Development of an algorithm for global optimization

Conventional research of global optimization is based on Monte-Carlo
sampling

Or additional noise such as GAN and Bayesian Optimization
Such as quantization or quantum computing, using uncertainty in the domain
may be effective for global optimization. - Optimization algorithm based on
number theory.

Development of global optimization on the differential manifold.

There is a lot of new research after failure on stochastic filtering on the
differential manifold.

Requirement of Wiener Proces on tangent space for learning equation.
Researching the global optimization based on a combination of gradient
replacing a Hessian

NTK and Natural Gradient are so effective? Sufficient?
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