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ABSTRACT 
 

This paper proposed embedding watermark data into all 

highest subband of n-level 2DDWT. Data embedding scheme 

is based on quantization index modulation of 2DDWT 

coefficient. The result of the image embedded watermark 

shows good visibility in near 40[dB] PSNR and robustness. 

This scheme is experimented in various resolution of image 

and attacked in various types filtering. The result shows 

developed performance in overall than the previous works, 

except certain types of attacks. 

 

 Ⅰ. Introduction 
 

Recently, we live in various multimedia contents era. That 

contents spread out easily to communicate each other. So the 

ownership of the multimedia image is need to protected by 

watermark scheme. Watermark scheme is continuously 

developing for needs until now. Watermark scheme is 

commonly classified in two types; blind and non-blind type. 

We focused to research blind scheme. So using attacked image, 

we abstract watermark data, and propose watermark which is 

robust to several attacks and also visibility.  

In this paper, we propose the spreading out multiple 

watermark data. Each subbands has different frequency, and 

each frequency has different robustness for attacks. Therefore, 

we attempt to embed watermark data in various frequency 

bands and extract the data by collecting and selecting. 

 

Ⅱ. Watermark Embedding & Extracting  
 

This paper proposes a digital watermarking scheme to 

protect the ownership of a digital image, which spreads out 

multiple watermark data into the subbands resulting from n-

level 2-dimensional DWT of the host image.  

This scheme is shown in Figure 1, which consists of 

watermark embedding scheme (a) and extraction scheme (b).  
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Figure 1. The proposed watermarking scheme: (a) watermark 

embedding scheme, (b) watermark extraction scheme. 

 

It uses only Y channel in YCbCr color format. So, RGB 

image should be converted into YCbCr image. Among them, Y 

channel is transformed to the frequency domain by n-level 2-

dimensional (2DDWT), where n is determined by Eq. (1).  
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Where, qp  and QP  are respectively the resolutions of 

watermark data and the host image. Then the weighting factors 

S for the nth level subbands are calculated according to the 

kind of subband and the energy of the subband as Eq. (2), (3), 

and (4). 
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Where,  HHLHHLLLS ,,, are the nth level subbands. 

LLE , )or( HLLHMEM  , and HHE  are calculated by Eq, (5). 
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Where, NM   is the resolution of nth level subband, ic  is 

the ith coefficient of corresponding subband. S  

(  HHLHHLLLS ,,, ) is the experimentally determined 

parameter. We have used 2.0LL , 4.0 HHHLLH  . 

Also lHHlMlMhLLlLL TTTTT ,,,,, and,,,,  are also experimental 

parameters. Here 5.1, lLLT , 2,,,  lHHlMhMLLh TTTT  we 

used.  

Meanwhile, the watermark data is scrambled using a k-stage 

linear feedback shift register (LFSR) in the manner that each 

coefficient is Exclusive-ORed to the serial output of the LFSR 

as Eq. (6). Here, the feedback characteristics and the initial 

values of the register are the security key. 

 

ikii fww ,'                                      (6) 

 

Where, iw  and 'iw  are respectively watermark data bit 

values before and after scrambling, and ikf ,  is the ith serial 

output from  kth LFSR stage.  

Then the scrambled watermark data is repeatedly inserted 

into each of the four nth level subband as follows, where 'ic  is 

the watermarked coefficient. 
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Then, the watermarked data is n-level inverse 2DDWTed and 

converted into RGB image to get the watermarked host image. 

To extract the embedded watermark data, same procedure as 

embedding is performed by watermarked and attacked image 

with the key. The extracted data is de-scrambled with the same 

Table 1. Experimental results for various images and various attacks 

Attacks 

512×512 1,024×1,024 640×480 1,280×960 1,920×1,080 3,840×2,160 

PSNR 

[dB] 
NCC 

PSNR 

[dB] 
NCC 

PSNR 

[dB] 
NCC 

PSNR 

[dB] 
NCC 

PSNR 

[dB] 
NCC 

PSNR 

[dB] 
NCC 

Watermarked but no attack 40.21 - 40.14 - 39.33 - 39.37 - 39.48 - 39.43 - 

Pixel 

value 

change 
attacks 

JPEG quality 80/100 35.06 0.9991 36.37 1.0000 34.75 1.0000 35.73 1.0000 37.67 1.0000 38.16 0.9997 

JPEG quality 60/100 33.00 0.9328 33.99 1.0000 32.33 0.9869 33.43 1.0000 34.89 1.0000 35.82 0.9997 

JPEG quality 40/100 31.65 0.7157 32.46 0.9930 30.38 0.8165 31.93 0.9993 33.12 1.0000 34.27 0.9997 

JPEG quality 20/100 29.45 0.1988 29.93 0.7273 28.16 0.2800 29.45 0.8050 30.45 0.8851 31.58 0.9983 

sharpening 32.90 0.9808 34.11 0.9987 31.99 0.9598 33.20 0.9985 35.87 0.9995 37.58 1.0000 

Gaussian blurring (3×3) 33.47 0.9591 34.53 0.9927 32.70 0.9220 33.64 0.9939 36.25 0.9993 37.74 0.9997 

Gaussian blurring (5×5) 30.27 0.8445 30.66 0.8925 29.22 0.7358 29.86 0.9126 31.90 0.9758 33.58 0.9947 

Average blurring (3×3) 31.69 0.9358 32.74 0.9833 30.97 0.8792 31.85 0.9860 34.48 0.9993 35.98 0.9995 

Median filtering (3×3) 32.81 0.9623 34.08 0.9943 31.97 0.9443 32.85 0.9871 35.79 0.9995 37.44 0.9985 

Histogram equalization 18.73 0.5923 17.59 0.5816 19.08 0.6741 19.78 0.6199 18.73 0.6752 18.85 0.5500 

Gaussian noise 3% 30.37 0.5850 30.54 0.9774 30.53 0.7298 30.04 0.9956 30.44 0.9997 30.50 0.9997 

Salt&pepper noise 3% 34.28 0.9452 34.35 0.9997 34.38 0.9918 34.17 1.0000 34.33 1.0000 34.30 1.0000 

contrast (-20) 36.28 0.9972 26.66 0.8380 26.85 0.8847 27.59 0.8333 27.33 0.9396 26.17 0.8663 

Average 31.54 0.8191 31.39 0.9214 30.25 0.8311 31.04 0.9332 32.40 0.9595 33.23 0.9543 

Geometric 

attacks 

Shrink 0.8 fold 37.28 1.0000 39.81 1.0000 37.18 0.9997 38.91 1.0000 42.76 1.0000 43.55 0.9997 

Shrink 0.5 fold 32.52 0.9979 33.82 0.9997 32.04 0.9887 32.88 0.9997 35.82 1.0000 37.26 0.9997 

Shrink 0.25 fold 28.52 0.6748 28.91 0.9290 27.59 0.5528 28.21 0.9160 30.01 0.9929 31.78 0.9960 

Magnify 2 folds 44.65 1.0000 47.12 1.0000 44.46 1.0000 46.28 1.0000 49.95 1.0000 50.61 0.9997 

Rotation π/2 36.89 1.0000 37.69 1.0000 14.61 0.9979 13.21 0.9985 10.58 0.9977 10.91 0.9954 

Rotation π/3 13.19 0.9958 16.08 0.9962 15.09 0.9968 14.06 0.9985 11.39 0.9296 11.68 0.9230 

Rotation π/4 12.73 0.9950 15.75 0.9927 15.17 0.9950 14.16 0.9956 12.48 0.9699 12.63 0.9754 

Rotation π/6 13.15 0.9929 16.38 0.9933 15.68 0.9940 14.96 0.9948 13.64 1.0000 13.92 0.9995 

Cropping center 25% 11.31 0.9845 10.00 0.9750 9.64 0.9097 9.64 0.9030 10.63 0.9977 10.64 0.9910 

Average 25.58 0.9601 27.28 0.9873 23.496 0.9372 23.59 0.9784 24.14 0.9875 24.78 0.9866 

Total average 29.10 0.8767 29.70 0.9483 27.48 0.8745 27.99 0.9516 29.02 0.9709 29.77 0.9675 

 



key as the embedding process. The result is more than 16 sets 

(more than 4 sets of each subband) of watermark data. The 

value of each location of watermark data is the one appearing 

most frequently. 

 

Ⅲ. Experiments and Results 
 

We used the 1024bit binary logo image for watermark 

embedded to host image, as shown in Figure 2.  

 

 
Figure 2. Watermark data used(32x32) 

 

This scheme is experimented for various kinds of images for 

various kinds of attacks, and the results of which are shown in 

Table 1. PSNR after embedding watermark shows near 40[dB] 

at all image of resolution and noticeable visibility. Robustness 

for the attacks is shown as NCC value, and shows high 

robustness for overall resolution. But, the image which 

watermark is embedded in high resolution, high level in 

2DDWT shows better result. Watermark size is fixed as 32x32 

in this experiment, so at 512x512 shows 3 level 2DDWT, 

3840x2160 shows 5 level 2DDWT according to the image size. 

Also we have compared our scheme to four previous works, 

which are shown in Table 2. From Table 1 and 2, our scheme 

can be said to have both enough invisibility of the watermark 

data and enough robustness for more general kind of attacks.  

Table 2. Comparison with existing methods 

Attacks 

Proposed [1] [2] [3] [4] 

Visibility WM WM WM WM Visibility WM 

PSNR [dB] SSIM NCC BER NCC NCC BER PSNR [dB] BER 

Pixel 

value 

change 

attacks 

JPEG 80 36.29 0.9984 0.9998 0.00008 - 0.9559 0.0000 37.01 0.0087 

JPEG 60 33.91 0.9969 0.9865 0.0063 - 0.8040 0.0000 - 0.2187 

JPEG 40 32.30 0.9955 0.9207 0.0383 - - 0.0020 - - 

JPEG 20 29.84 0.9922 0.6491 0.1771 - - 0.2058 - - 

sharpening 34.27 0.9937 0.9895 0.0048 - - - 22.04 0 

Gaussian blurring (3×3) 34.81 0.9940 0.9870 0.0060 - 0.9912 0.0018 39.29 0.0530 

Average blurring (3×3) 32.95 0.9906 0.9638 0.0169 - 0.9618 - 28.26 0.2568 

Median filtering (3×3) 34.16 0.9925 0.9810 0.0089 - 0.8743 0.0984 32.03 0.2838 

Gaussian noise 0.5% 50.28 0.9999 0.9999 0.00001 - 0.846 - - - 

Gaussian noise 1% 39.06 0.9992 0.9999 0.00003 - - 0.0585 - - 

Gaussian noise 3% 30.46 0.9946 0.8812 0.0598 - - - - - 

Salt&pepper noise 1% 41.55 0.9995 0.9999 0.00001 - 0.9388 0.2604 - - 

Salt&pepper noise 3% 34.30 0.9977 0.9894 0.0051 - - - - - 

contrast (-20) 28.48 0.9865 0.8932 0.0500 - - 0.0426 - - 

Average 35.19 0.9950 0.9457 0.0026 - 0.9102 0.0743 31.72 0.1368 

Geometric 

attacks 

Shrink 0.8 fold 39.92 0.9978 0.9999 0.00003 1.0000 - - - - 

Shrink 0.5 fold 34.06 0.9925 0.9976 0.0010 0.9911 - 0.0240 - - 

Shrink 0.25 fold 29.17 0.9789 0.8436 0.0774 0.6996 - - - - 

Magnify 2 folds 47.18 0.9996 0.9999 0.00001 1.0000 - - - - 

Rotation π/2 20.65 0.6829 0.9982 0.0008 1.0000 - - - - 

Rotation π/3 13.58 0.6017 0.9733 0.0131 1.0000 - - - - 

Rotation π/4 13.82 0.6201 0.9873 0.0060 0.9978 - - - - 

Rotation π/6 14.62 0.6592 0.9957 0.0019 1.0000 - - - - 

Cropping center 25% 10.31 0.5131 0.9601 0.0198 0.8965 - 0.1299 17.46 0.0390 

Average 24.81 0.7828 0.9728 0.0133 0.9538 - 0.0769 17.46 0.0390 

Total average 31.12 0.9120 0.9563 0.0214 0.9538 0.9102 0.0748 29.34 0.1228 

 



The compared papers below is selected mainly for watermark 

algorithm which is proposed recently. Watermark algorithm is 

continuously developing, and considered the recent papers as 

the most developed method. 

 

Ⅳ. Conclusion 
 

In conclusion, watermark embedding scheme proposed in 

this paper is color digital image watermark using all subband of 

2DDWT. This paper has experimented visibility and 

robustness of watermark in various resolution, and shows 

necessity of performing various attacks such as global filtering, 

compression, and diverse geometric attacks to measure general 

watermark robustness. By the result of this paper, it suggests 

the direction of future research of watermark scheme. 
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 Abstract—This paper presents a chaos-based cryptographic 
algorithm on Android for private image storage and 
transmissions. The robust chaotic map based on absolute value 
nonlinearity is presented and analyzed before employing in the 
encryption process. Dynamic behaviors of the chaotic map are 
described in terms of Equilibria, Jacobian matrix, bifurcation 
diagram, and Lyapunov Exponent spectrum. The designed 
encryption process and decryption process were based on XOR 
operations of pixel values with the random bit signals generated 
from the chaotic map. The keys were designed based on a 16 
alphanumeric characters password for the initial condition and 
control parameter. The implemented Android application was 
developed using Java programming language on the Android 
studio. The generally used LENA image with the size of 256×256 
and 512×512 were employed for demonstrations of encryption 
and decryption procedures. Encryption qualitative performance 
were evaluated through pixel density histograms and correlation 
plots. Encryption quantitative performances were evaluated 
through encryption speed, correlation coefficients, Net Pixel 
Change Rate (NPCR), and Unified Average Changing Intensity 
(UACI). Results from actual Android application on a smart 
phone with both correct and wrong keys are also included. 
 
Keywords—Chaos, Cryptographic Algorithm, Android, Image 
Storage, Image Transmission. 

I. INTRODUCTION 

 Recent advances in communications, especially the 
internet, have led to great demands of secured data storage and 
transmissions. Security and reliability of data are needed in 
various applications such as medical, industrial, military, and 
internet of things [1]. From recent research, image data is one 
of the most used data types in data cryptography [2-5]. 
Various cryptographic approaches were suggested for both 
software and hardware, involving chaos-based approaches. 
Chaos-based cryptography exploits the properties of chaotic 
systems, including sensitivity to initial conditions and 
parameters of the system. Chaotic maps which are iterative 
functions in discrete-time domain that can exhibit behaviors, 
were frequently implemented in chaos-based cryptography  
[3-4]. For example, the image encryption and decryption 
algorithm using the logistic map and two-dimensional cat map 
[3], and the colored image encryption algorithm using the 
logistic map and characteristics of plain image [4]. However, 
chaotic maps implemented recently were not robust and led to 

 
Fig. 1. Bifurcation diagram of (1) where the value of control parameter a is in 
the range of [0, 2]. 

 
Fig. 2. LE spectrum of (1) where the value of control parameter a is in the 
range of [0, 2]. 

 
complex design of the cryptographic system. Despite the fact 
that, an implementation of cryptographic systems on mobile 
platforms provide convenience in image encryption and 
decryption, only few implementations of chaos-based 
cryptography using chaotic maps on mobile device were 
reported, such as the chaos-based secret image transmission 
and reception on Android [5].  
 According to the report in 2015 by the Internet Society, 
Android has a significant portion of mobile devices share [6]. 
Therefore, this paper proposed the cryptographic algorithm on 
Android mobile platform. The proposed cryptographic 
algorithm is based on the second case of chaotic maps with 
absolute value nonlinearity and the XOR operation. The 
implementation of chaotic maps with absolute value 
nonlinearity on Android was experimented in previous 
research by generalizing the first case of chaotic maps with 



 

 
Fig. 3. Block diagram of encryption procedure. 

 
absolute value nonlinearity on Android [7]. Results from the 
experiment on Android stated that chaotic maps with absolute 
value nonlinearity can be implemented on Android. 

II. THE SECOND CASE OF CHAOTIC MAPS WITH  
ABSOLUTE VALUE NONLINEARITY 

 The second case of chaotic maps with absolute value 
nonlinearity which implemented in this paper is one of four 
robust chaotic maps proposed in the recent research [8]. All 
cases of chaotic maps with absolute value nonlinearity were 
tested for their robustness by testing random bit sequences 
which consist of 1,000,000 bits generated from the chaotic 
maps. Random bit sequences generated from chaotic maps 
with absolute value nonlinearity passed all 15 standard tests of 
the National Institute of Standards and Technology (NIST) 
statistical test suite from 800-22rev1a special publication. The 
second case of chaotic maps with absolute value nonlinearity 
can be mathematically described as  
 

|1|1 nn axx    (1) 

 
where a is the control parameter of the chaotic map which has 
the value in the range of [0, 2] and xn is the state variable of 
the chaotic map which has the value in the range of [0, 1]. 
Additionally, the Jacobian matrix of (1) is calculated as 
 

))]1(([ axsignaJ        (2) 

 
, and the fixed points of (1) are indicated as 
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Chaotic behaviors of (1) are also analyzed in this paper, 
qualitatively through the bifurcation diagram, and 
quantitatively through the Lyapunov Exponent (LE) spectrum. 

 
Fig. 4. a. The plain image, b. The encrypted image, c. The decrypted image 
using the correct key, and d. The decrypted image using the wrong key 

 
The bifurcation diagram indicates possible long-term values as 
a function of a bifurcation parameter. Fig. 1 shows the 
bifurcation diagram of (1) from MATLAB. From the 
bifurcation diagram, chaotic behaviors of (1) occurred when 
the control parameter a is in the range of [1, 2] in which the 
number of blue dots that refer to possible values in time 
domain of (1) is enormous in this region. The LE quantifies 
the mean rate of divergence of trajectories which start 
infinitesimally close to the reference and also provides a 
measurement of the instability of the system. The LE can be 
expressed mathematically as [9] 
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where N is the number of iterations,   is the LE value, and 
f’(xn) is the first derivative of the chaotic map, Fig. 2 shows the 
LE spectrum of (1) from MATLAB. As seen from the LE 
spectrum, the LE value is greater than 0 when the value of 
control parameter a is in the range of [1, 2], that is, equation 
(1) exhibits chaotic behaviors in this region, the same region 
as the bifurcation diagram of (1). 

III. PROPOSED SECURED CHAOS-BASED 
CRYPTOGRAPHIC ALGORITHM 

 The proposed chaotic-based cryptographic algorithm for 
Android in this paper is based on XOR operation of the pixel 
values in each separated color planes of the plain image with 
numbers in a chaotic sequence generated from (1). 
 Fig. 3 shows the block diagram of the encryption process 
in the proposed chaos-based cryptographic algorithm. The 
encryption process starts by the acquisition of the plain image 
and the password which is a set of 16 alphanumeric characters. 
The acquired password is transformed into a set of ASCII 
number which each alphanumeric character is transformed into 
8-bit ASCII number, resulted in a 128-bit numeric password. 
The transformed password and average pixel values of each 
color plane of the plain image are used to calculate the initial 
condition and the control parameter for the chaotic map in (1). 
The generated initial condition and control parameter are then 
employed in (1) to generate a chaotic sequence of numbers 
 



 
Fig. 5. a. Histogram of the plain image, b. Histogram of the encrypted image 
in red, green, and blue color planes, respectively 
 
 

 
Fig. 6. Upper, pixel correlation diagram of the plain image, and lower, pixel 
correlation of the encrypted image in red color plane to adjacent pixels in 
horizontal, vertical, and diagonal directions, respectively 

 
with the number of iterations used equals to number of 
pixels+2. After the chaotic sequence is generated, the acquired 
plain image is then scrambled using the generated chaotic 
sequence to swap pixel values of each pixel in all color planes 
with the pixel indicated by the number of each element of the 
chaotic sequence multiplied by the number of pixels-1, starts 
from the top-leftmost pixel of the plain image and the first 
element of the chaotic sequence. The scrambled image is then 
processed through the XOR operation by XOR pixel values in 
each color plane with numbers in the generated chaotic 
sequence from (1) multiplied by 255, starts from the top-
leftmost pixel of the scrambled image. Additionally, XOR 
operation of pixel values in red color plane starts by XOR the 
multiplied number of the first element of the chaotic sequence 
with the first pixel value in red color plane, while the XOR 
operation of green and blue color planes starts by XOR 
multiplied numbers of the second and the third elements of the 
chaotic sequence with the first pixel values in green and blue 
color plane, respectively. After the XOR process was 
completed, the processed or encrypted image is displayed and 
prompt users to export the encrypted image. The encrypted 
image can be exported as .PNG image file along with average 
pixel values in each color plane as .txt text file. The exported 
.txt text file which contains average pixel values is required in 
the decryption process.  
 The decryption process is similar to the encryption process. 
However, there are some differences which are, first, the 
decryption process requires average pixel values in each color 
plane of the original plain image which contained in the text 

TABLE I.  CORRELATION COEFFICIENTS BETWEEN THE PLAIN IMAGE 

AND THE ENCRYPTED IMAGE AT THE SIZE OF 256×256 AND 512×512 

Correlation coefficients (C) 256×256 512×512 

CRR (Red-Red) 0.0036 0.0008 

CRG (Red-Green) -0.0027 -0.0016 

CRB (Red-Blue) -0.0034 -0.0008 

CGR (Green-Red) 0.0026 0.0010 

CGG (Green-Green) -0.0002 0.0003 

CGB (Green-Blue) -0.0022 -0.0009 

CBR (Blue-Red) 0.0046 0.0017 

CBG (Blue-Green) -0.0008 0.0018 

CBB (Blue-Blue) 0.0001 -0.0007 

TABLE II.  NPCR AND UACI OF THE ENCRYPTED LENA IMAGE AT THE 

SIZE OF 256×256 AND 512×512 

 256×256 512×512 

NPCR (Red) 99.5697 99.5975 

NPCR (Green) 99.6414 99.6250 

NPCR (Blue) 99.6124 99.6143 

UACI (Red) 33.5511 33.4609 

UACI (Green) 33.4863 33.5438 

UACI (Blue) 33.5433 33.5533 

 
 
file that exported from the encryption process to generate 
initial conditions and control parameters for (1). Second, the 
XOR operation is operated before the image unscrambling. 
The last difference is that, the image unscrambling process 
which has the same mechanism as the scrambling process, 
starts from the pixel on the bottom-rightmost of the image 
instead of the top-leftmost pixel. 

IV. EVALUATION OF THE PROPOSED CHAOS-BASED 
CRYPTOGRAPHIC ALGORITHM 

 The implemented Android application was developed on 
the Android Studio Integrated Development Environment 
(IDE) which is an official IDE for Android application 
development. Despite the fact that the Android Studio has an 
emulator which can be used to test the developed application 
on virtual device, the implemented application in this paper 
was tested on an actual Android device, the SONY Xperia M2 
smartphone. Fig. 4 displays the results on the smartphone 
which operating the implemented application, where (a) shows 
the plain image before the encryption, (b) shows the encrypted 
image, shows the decrypted image which used the same key as 
the encrypted key, and (d) shows the decrypted image using 
the wrong key. The average computation time used in the 
encryption process when encrypt the LENA image in sizes of 
256×256 and 512×512 pixels, 5 times for each image, were 
measured. The experiment on the smart phone shows that 



average computation time of the 256×256 pixels LENA image 
is 0.837 seconds, and average computation time of 512×512 
pixels LENA image is 3.591 seconds.  
 The result from encryption process of the implemented 
Android application which used the 256×256 LENA image as 
the plain image, was analyzed using MATLAB 2013a 
quantitatively and qualitatively. Quantitative analysis was 
achieved through the correlation coefficients, the Number of 
Pixel Changing Rate (NPCR), and the Unified Averaged 
Changed Intensity (UACI). Besides, qualitative analysis was 
achieved through the pixel density histograms and the pixel 
correlation diagrams. Fig. 5 shows the pixel density 
histograms of the plain image and the encrypted image. The 
pixel density histograms show that the encrypted image has 
uniformly distributed histograms in all color planes, i.e. red, 
green, and blue color planes, while the pixel density 
histograms in all color planes of the plain image are not. Fig. 6 
illustrates the pixel correlation diagrams of the plain image 
and the encrypted image in red color plane. Pixel correlation 
diagrams depict the pixel values of each pixel compared to 
adjacent pixels in horizontal, vertical, and diagonal directions. 
The correlation diagrams of the plain image reveal that pixel 
values of each pixel are similar to adjacent pixels. On the other 
hand, pixel values of each pixel in the encrypted image are 
significantly differ to their adjacent pixels, the correlation 
diagrams of the encrypted image are scattered in all directions. 
 Table 1 depicts the correlation coefficients between the 
plain image and the encrypted image in all color planes. The 
correlation coefficients were achieved through the correlation 
coefficient of pixels, comparing each color plane of the plain 
image to all color planes of the encrypted image. As described 
in table 1, all correlation coefficients between the plain image 
and the encrypted image were close to zero. Table 2 shows the 
NPCR and UACI value of the encrypted 256×256 pixels and 
512×512 pixels LENA image. The NPCR is used to measure 
the changing rate of pixels in encrypted images, and the UACI 
is used to measure changes in pixel values of the encrypted 
images, where their corresponding original plain images have 
some slight changes, i.e. only one pixel changed [10]. The 
NPCR and UACI can be described as 
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where C1 and C2 denote the pixel in encrypted image 1 and 2 
which has one pixel changed, D indicates if the pixel value is 
changed which is 0 if C1 = C2, and 1 if C1 ≠ C2, i and j is the 
horizontal and vertical position of pixels in images, T is 
number of pixels, and P is maximum value of the image 
format, in this case is 255. The NPCR and UACI in table 2 is 
close to 99% and 33% for both 256×256 and 512×512 images, 
which were close to theoretically values. 

CONCLUSIONS 

 This paper has proposed a chaos-based cryptographic 
algorithm based on the chaotic map with absolute value 
nonlinearity. The proposed cryptographic algorithm can be 
implemented on actual Android device, and was tested on a 
smart phone. The test results on smart phone reveal that the 
proposed cryptographic algorithm can encrypt the test image 
which has the size of 256×256 pixels in less than 1 second. 
The result from the encryption process of the proposed 
cryptographic algorithm were analyzed qualitatively through 
pixel density histograms and pixel correlation diagrams, and 
quantitatively through the correlation coefficients, NPCR, and 
UACI on MATLAB. Even though the satisfied results are 
acquired from the analysis, the proposed image cryptographic 
algorithm need improvements with more types of tests. 
However, the proposed cryptographic algorithm provides an 
alternative algorithm to be implemented on mobile platforms. 
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Abstract—We implemented a computational processing for 

enlarging a viewing zone of holographic images to a GPU with the 

aim of realizing real-time reconstruction of wide-viewing-zone 

holographic images. We achieved 50 times faster-calculation by a 

GPU than a CPU.  

Keywords—Holography; Integral Photography;  

Three Dimensional Imageng; GPU; CUDA 

I.  INTRODUCTION 

We have proposed and developed a real-time reconstruction 
system for 3D live scenes, which uses integral photography 
(IP) and electro-holography for recording and reconstructing 
3D live scenes respectively [1]. However, small viewing-zone 
angle of reconstructed image is one of remaining problems of 
3D displays based on electro-holography. Various methods 
have been proposed for enlarging the viewing-zone angle of 
reconstructed 3D images [2, 3]. We have focused on the wider 
viewing-zone-reconstruction system according to Senoh’s 
method [3] which uses time-division multiplexing of three 
different horizontal viewing-zone-angle holograms.  

In order to apply the method to our real-time reconstruction 
system, we devised a hologram-generation algorithm which 
generates three 8K hologram, which have different viewing-
zone angle in horizontal direction respectively, from 4K 
integral photographic image (IP image) [4]. However, we have 
not yet realized real-time reconstruction of 3D scenes with the 
wider viewing-zone angle, because the calculation cost of the 
devised algorithm is too high to be performed in real time. In 
this paper, we show that the processing time for the calculation 
of hologram generation by the algorithm can be reduced by 
using a Graphic Processing Unit (GPU) with CUDA developed 
by NVIDIA Corporation.  

II. ALGORITHM OF WIDE VIEWING-ZONE HOLOGRAM 

GENERATION 

Integral photography is a technique capable of capturing 
ray information of objects as an IP image by using a microlens 
array as shown in Fig. 1 [5]. An IP image consists of a lot of 
micro images (elemental images) made by each microlens. 

Each elemental image contains ray information of objects from 
a different direction pixel by pixel by microlenses as shown in 
Fig. 2. Therefore, we can reconstruct 3D image from IP images 
by using microlens array which is used in recording processing. 
The viewing-zone angle of the 3D image reconstructed from 
the IP image and the resolution of the reconstructed 3D image 
depend on the specifications of microlenses (the size of 
elemental images, the number of elemental images, etc.) In 
order to reconstruct 3D images with high resolution and wide 
viewing-zone angle from IP image, we need to capture IP 
images with a higher-resolution camera as possible. Although 
we have an 8K reconstruction system [3], we have no camera 
which can capture 8K images. In this paper, we capture a 4K IP 
image and generate an 8K IP image from the captured IP image 
for hologram generation by using Bicubic interpolation method.  

Fig. 1. Capture System of Integral Photography  



 

 

 

(a) Side of View  

 

(b) Front of View  

Fig. 2. Viewing-Zone Angle of IP  

We devised a method of generating three holograms [4], in 
order to use time-division multiplexing system [3]. However, 
in order to reconstruct wider viewing-zone-angle 3D image by 
the time-division multiplexing system, we needs multiple 
holograms which contain different viewing zone in horizontal 
direction. Because we generate a single hologram from a single 
IP image, each IP image, which has ray information of each 
viewing zone, has to be prepared for the system. Based on the 
devised hologram-generation method, we generate three 8K IP 
images from a single 4K IP image as described below. After 
generating three IP images, we perform hologram generation 
with the three 8K IP image. Each pixel in an elemental image 
has different ray information from a different direction as 
shown in Fig. 2. We can generate new elemental images that 
have ray information of the desired viewing zone by selecting 
appropriate pixels from original elemental images as shown in 
Fig. 3, and interpolating the vacant pixels between the selected 
pixels. Then, we generate new three IP images for wide 
viewing-zone-angle hologram generation by executing the 
processes for all elemental images.  

We execute hologram generation by simulation of light 
propagation as shown in Fig. 4. In the simulation, we record a 
reproduction light of each IP image in holograms. However, 
we need to add random phases to the reproduction light of each 
IP image in order to diffuse the reproduction light and prevent 
the concentration of the reproduction lights on the holograms 
[6]. In this paper, we used a method of approximating the 
simulation of the light propagation in Fig. 4 to only one FFT 
and reduce the calculation cost of the simulation by using a 
capture system under a specific constraint [7].  

III. IMPLEMENTATION TO A GPU 

In this paper, we implemented the above image processes 
and calculations to a GPU with CUDA 6.0. Fig. 5 shows the 
flowchart of the processes.  

Fig. 3. Algorithm for Generating IP Images  

Fig. 4. Hologram Generation from an IP Image  

First, a GPU selects pixels that have desired ray 
information from an original IP image captured with a 4K 



 

camera as shown in Fig. 3 (Process 1 in Fig. 5) for hologram 
generation. The GPU generates three new 4K IP images that 
have ray information from different viewing zones by 
interpolating the selected pixels (Process 2 in Fig. 5). Then, the 
GPU enlarge the size of the three 4K IP images to 8K size, 
which corresponds to the resolution of display for 
reconstructing holograms (Process 3 in Fig. 5). In the process 
of enlarging, the number of elemental images is increased in 
order to improve the resolution of reconstructed 3D image. 
Finally, the GPU generates three holograms from each new IP 
image by the optical simulation as shown in Fig. 4 (Process 4 
in Fig. 5).  

Fig. 5. Flowchart of Wide Viewing-Zone Hologram Generation 

Many core computing is effective to accelerate the above 
processes because the processes by pixels are independent of 
each other. With CUDA, we can use the texture unit in a GPU 
and implement fast calculation of enlarging IP images (Process 
3 in Fig. 5) easily. However, we need to take care of 
implementation to execute efficient memory access. A GPU 
computes micro and many array of pixels in the process. We 
can use cuFFT, which is the library for computing FFT with 
CUDA for accelerating hologram generation (Process 4 in Fig. 
5).  

Table I shows the processing times of the processes in Fig. 
5 by using a CPU or a GPU. We use an Intel Core i7 2600K 
(using only single core) as the CPU, and a Tesla K20c as the 
GPU.  

The processing time for Process 1 in Fig. 5 by the GPU is 
25 times faster than that by the CPU. The processing time for 
Process 2 in Fig. 5 by the GPU is 238 times faster than that by 
the CPU. The processing time for Process 3 in Fig. 5 by the 
GPU is 12 times faster than that by the CPU, and the 
processing time for Process 4 in Fig. 5 by the GPU is 64 times 
faster than that by the CPU. For the entire processing, the 
calculation by the GPU is 50 times faster than that by the CPU. 
The accelerating rates of Process 1, Process 3, and Process 4 
are lower than that of Process 2. In Process 1, the efficiency of 
memory access is low because a GPU have to access many 
micro dotted area of the memory when the GPU selects pixels 

that have ray information from the desired viewing zone. In 
Process 3, register spilling resulted in the large overhead. In 
Process 4, a GPU spends a long time to calculate random 
phases which is used when a GPU simulates light propagation 
of IP images. We need to resolve these problems to accelerate 
hologram generation more.  

TABLE I.  PROCESSING TIMES BY A CPU AND GPU 

 CPU 

GPU 

(accelerating 

rate) 

Processing Time 

[ms] 

Process 1 10 
0.4 

(25 times) 

Process 2 476 
2 

(238 times) 

Process 3 443 
36 

(12 times) 

Process 4 26114 
407 

(64 times) 

Entire Processing 27061 
546 

(50 times) 

 

IV. CONCLUSION 

We successfully reduced the processing time required for 
wide viewing-zone-angle hologram generation with IP by 50 
times when using a GPU rather than a CPU. In the future, we 
plan to accelerate more the processes by resolving a register 
spill in the processes, reducing a calculation cost about random 
phases for the light propagation, etc.  
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Abstract — Tracking of features in a video sequence is a critical 

task in visual odometry and has significant influence on the 

accuracy of ego-motion estimation. The paper proposes a novel 

method to improve the accuracy of tracking by adaptively 

constraining features matches based two criteria. A scale 

constraint for the disparity of within the binocular images and an 

angular constraint associated with epipolar geometry. 

Experimental results performed using benchmark stereo image 

sequences demonstrated the effectiveness of the proposed method 

and its improvements over existing approaches. 

Keywords： egomotion estimation, binocular stereo, tracking, 

feature matching, epipolar geometry 

I. INTRODUCTION 

Research on visual odometry began in the 80's with a 
representative work on the vision-guided rover [1]. The work 
starts a series of research associated with the theories and 
practice toward solving ego-motion estimation problem in fields 
of visual odometry and simultaneously localisation and mapping 
(SLAM). In visual odometry, the environment can often be quite 
complex with many uncontrolled variables which makes 
accurate tracking a difficult task. Nevertheless, to obtain more 
correct egomotion estimation, tracking is essential and critical. 
To improve tracking, the number and distribution of tracked 
features are important factors.  

In this work, we propose a generic mathematical framework 
for effective feature tracking for binocular stereo image 
sequences. We investigate the possibility to dynamically adjust 
constraining parameters associated with the disparity and the 
epipolar geometry to improve the accuracy of tracked features. 

This paper is organised as follows. In Section 2 some related 
work are surveyed. The proposed method is described in Section 
3. In Section 4, we perform experiments using the proposed 
method and compare its performance with a conventional 
implementation. Finally, Section 6 concludes this work and 
gives ideas for future work. 

II. RELATED WORK 

Works have been done previously to improve feature 
tracking [2]. One effective approach is presented in [3], which is 
able to dramatically improve the overall accuracy using outlier 
rejection. A multi-frame integration strategy predicts and 
corrects each tracked feature according to the previous 

observations in [4], which achieves precise ego-motion 
estimation without global optimization. There are also 
keyframe-based feature selection strategies, such as proposed in 
[5]. Some other approaches also include integrate sensory data 
fusion technique, such as in [6] and [7], which fuses the global 
positioning system data with visually recovered motion to 
decrease accumulated motion error. An overall review can be 
found in [8]. 

The general pipeline of binocular visual odometry is as 
shown in Figure 1. The input of pipeline is a pair of binocular 
images and the output contains the estimated 3D structure of the 
tracked scene points and the motion of the vision system relative 
to the location where the last input images were taken. 

 

Figure 1. Pipeline of a binocular feature-based visual odometry framework. 

The imaging geometry of a pinhole camera can be described 
by a nonlinear perspective projection model given in [9]. To 
model the nonlinear lens distortion geometry, we first project a 
point (x,y,z) in the 3-D space onto an ideal pixel (u ̇,v )̇ in 
normalised image plane, as 

(
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) ~ (
1 0 0 0
0 1 0 0
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) (
𝑅 𝑡
0 1
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𝑦
𝑧
1

)                  (1) 

where ~ denotes projective equivalence (i.e. equality up to a 
scale), the rotation matrix R∈SO(3) and the translation t define 
the extrinsic parameters transforming world coordinates to the 



camera-centred frame. The nonlinear lens distortion is then 
approximated by the polynomial function 

(
𝑢̆
𝑣̆
1
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) 𝐷           (2) 

where the row-vector D models distortion factors. The 
normalised coordinates (u ,̆v  ̆) are transformed onto the image 
plane to form a pixel (u,v) observed in a captured image by 
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Figure 2. An example of rectified stereo image pair. 

After the above procedure, the input binocular images can 
be rectified, and Figure 2 shows an example of rectified image 
pair with pipolar lines marked in red. 

III. PROPOSED METHOD 

A good selection of reliable feature points can improve the 

tracking process. However, approaches using fixed thresholds 

are often unable to cope with the varying environmental 

parameters in visual odometry. In this work we propose to 

utilize an adaptive strategy to dynamically adjust the quality-

control threshold for feature matching according to the survival 

rate of tracked features.  

The adaptive strategy sets forth two constraints derived from 

the epipolar geometry: a scale constraint and an angular 

constraint, to facilitate the accurate matching of features. The 

main steps in the proposed method are illustrated in Figure 3. 

 

Figure 3. Steps involved in the proposed adaptive feature matching strategy. 

A. Scale constraint 

The difference in the distances between two matched 

features in one image and the next image usually varies in a 

gradual manner in a video sequence that has been recorded 

continuously in real-time. Therefore, the distance can be used 

to determine the reliability of tracked features. The pixel 

distances of two matched features as well as the measured depth 

values are combined to provide the scale cost function 

𝜖scale(𝜒, 𝜒′) = 𝑧(𝜒)‖𝜌(𝜒) − 𝜌(𝜒′)‖                 (4) 

where χ and χ' are corresponding matching features, ρ(∙) and z(∙) 

denote the image coordinates and depth value of a feature 

respectively. This model expects small movements of tracked 

image features which are further away, yet allows a closer point 

to have a larger change. The compensation of depth reflects to 

the nature of perspective projection. 

B. Angular constraint 

The epipolar constraint imposes scale and angular 

limitations on matched features. The angular cost function can 

be defined by 

𝜖𝑎𝑛𝑔𝑙𝑒(𝜒, 𝜒′) = 𝜏(𝜌(𝜒′), 𝜌(𝜒), 𝑒𝑡−1)             (5) 

where χ and χ' are corresponding matching features, ρ(∙) 

denotes the image coordinates of the features, τ represents the 

angle defined by three image points, and e_(t-1) is the last 

known position of epipole. The cost function in Eq. (5) 

constrains a matched feature χ' to a reflective fan-shaped area 

centred at χ. 

C. Adaptive adjustment 

 The constraints introduced in the previous subsections are 

combined into a summarised term to indicate if a match of 

features should be rejected or accepted for the final decision. 

Given a set of cost functions Θ (in this work 

Θ={ϵ_scale,ϵ_angle }) and a candidate feature match χ→χ

^'∈M_t, where M_t denotes the set of accepted feature 

mappings from frame t-1 to frame t, the summarised cost is 

defined as 

𝐶𝑡(𝜒, 𝜒′, Θ) = {
∞,∃𝜖 ∈ Θ s. t. Δ𝑡(𝜒, 𝜒′, 𝜖) > 𝑁𝑡

‖𝜈(𝜒) − 𝜈(𝜒′)‖,       otherwise
( 

where ν(χ) denotes the normalised vector representation of an 

image feature and Nt is the quality controlling parameter which 

is updated each time based on the ratio of previously accepted 

feature mappings from frame t-2 and frame t-1.  

The quality parameter is relaxed to tolerate a larger room 

of error in evaluating matches when the number of tracked 

features is decreasing, and is set stricter as the number of 

matched features raises. In this way, the balance between 

quality and survival rate of tracked features can be achieved in 

an adaptive manner. 

IV. EXPERIMENT RESULTS 

The proposed method is compared with a conventional 
implementation that also uses the epipolar constraint to filter out 
incorrect feature matches. The proposed method is tested using 
KITTI benchmark suite [10]. The suite includes real-world 
sequences collected in urban areas by a vehicle equipping with 
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four calibrated cameras, an inertial measurement unit (IMU) and 
a global positioning system (GPS).  

The sequence used for testing has been taken by stereo 
cameras and consists of 107 continuous image frames. The 
acquired sequence covers a driving distance of approximately 
107 m. The result is compared with the motion as measured by 
the GPS and IMU mounted on the moving vehicle. Figure 4 
shows the egomotion calculated by the proposed approach. 

 

Figure 4. Egomotion estimated by the proposed method (red) and motion 
measured by GPS and IMU (green). 

As can be seen from Figure 4, the estimated path is quite 
close to that of the ground truth, which demonstrates that the 
proposed method is effective in estimating the egomotion from 
stereo images alone, without other measurement devices.  

By integrating the egomotion of the camera system 
estimated using the proposed method and the 3D coordinates of 
feature points calculated from the stereo image pairs, we can 
construct a 3D model along the cameras' path. Figure 5 shows 
the resultant 3D scene reconstructed from the egomotion 
estimated. The egomotion estimated by the proposed method is 
shown in red and motion measured by GPS and IMU is shown 
in green for comparison.  

The proposed method is applied to four datasets from the 
KITTI database. The translation and rotation errors between the 
estimated egomotion and the given ground truths are given in 
Table 1. From the table, it can be seen that the average 
translation error is about 2.9%; in metric terms, it means that a 
movement of 1 m has an average error of 0.029 m. Also, the 
average rotation error is about 0.0156 radians per meter. By 
referring to the list of algorithm performances at the KITTI 
website, our results are comparable to the top 10 to 20 
algorithms. In addition, some of the top algorithms utilize input 
measurements from alternative sensory devices, whereas the 
proposed algorithm computes the camera system's egomotion 
from the stereo image sequences alone. Thus, it shows that the 
proposed method is able to provide significantly good 
egomotion estimation by improving the accuracy of feature 
tracking.  

To further demonstrate the performance of the proposed 
algorithm, we compare it with conventional egomotion 
estimation approaches with and without bundle adjustment (BA) 
[11]. Bundle adjustment is often used to optimize the final 
results and can often improve the outcome of egomotion 
estimation. Table 2 provides the reprojection root-mean square 
error of the proposed method with conventional approaches. 
From Table 2, it can be seen that the proposed method has better 
performance over conventional approaches. The results obtained 
by the proposed method can also be further improved by 
optimizing the calculated egomotion using bundle adjustment. 

Figure 5. 3D scene reconstruction based on the egomotion estimated by the 
proposed method (red) and motion measured by GPS and IMU (green). 

 

TABLE 1: TRANSLATION AND ROTATION ERRORS IN ESTIMATED EGOMOTION 

FOR THE PROPOSED METHOD. 

Dataset  

# 

TRANSLATION 

ERROR  

(%) 

ROTATION 

ERROR  

(DEG/M) 

1 1.08 0.0043 

2 1.72 0.0062 

3 5.92 0.0381 

4 2.70 0.0138 

Average 2.855 0.0156 
 

TABLE 2: COMPARISON OF REPROJECTION RMS ERROR 

Method Error (pixels) 

Conventional 29.55 

Conventional with BA 3.21 

Proposed Method 0.69 

Proposed Method with 

BA 

0.15 

V. CONCLUSIONS 

In this paper we propose an improved feature tracking 

algorithm for visual odometry. The tracking adaptively adjusts 

the strictness in matching features between two consecutive 

frames, according to the change of feature survival rate over 

time. The proposed method differs from typical visual 

odometry implementation by excluding wrong 

correspondences while maintaining good balance in feature 



numbers. Comparitive experiments have been conducted to 

evaluate the performance of the proposed method. From the 

experimental results, it can be seen that the proposed method 

outperforms conventional methods and is able to achieve 

accurate egomotion estimation by improving the quality of 

feature tracking. In addition, according to the comparitive 

results provided on the KITTI benchmark website, the 

performance of the proposed algorithm is comparable to the top 

10 to 20 algorithms from around the world. Based on the results 

obtain in this paper, we will extend the research further to 

develop a LiDAR-enabled visual odometry framework in the 

future. In additon we also aim to improve the error measures 

used in optimization by taking into account more factors, such 

as age of tracked feature and error covariance. 

 

REFERENCES 

 
[1] H. Moravec, "Obstacle Avoidance and Navigation in the Real World by 

A Seeing Robot Rover," in Tech. Report CMU-RITR-80-03, Robotics 
Institute, Carnegie Mellon University, Sep, 1980. 

[2] J. Shi and C. Tomasi, "Good Features to Track," in Proc. Inter-national 
Conference on Pattern Recognition 1994, pp 539-600, June 1994. 

[3] B. Kitt, A. Geiger, and H. Lategahn, "Visual Odometry Based on Stereo 
Image Sequences with RANSAC-based Outlier Rejection Scheme," in 
Proc. Intelligent Vehicles Symposium 2010, pp. 486-492, June 2010. 

[4] H. Badino, A. Yamamoto, and T. Kanade, "Visual Odometry by Multi-
frame Feature Integration", in Proc. First International Workshop on 
Computer Vision for Autonomous Driving at ICCV. 2013.  

[5] F. Bellavia, M. Fanfani, F. Pazzaglia, and C. Colombo, "Ro-bust Selective 
Stereo SLAM without Loop Closure and Bundle Adjustment," in Proc. 
17th International Conference on Image Analysis and Processing 
(ICIAP'13),  pp 462-471, 2013.  

[6] C. F. Olson, L. H. Matthies, M. Schoppers, and M. W. Maimone. "Rover 
Navigation using Stereo Ego-motion. Robotics and Autonomous 
Systems," Vol. 43, No. 4, pp 215-229, June 2003.  

[7] [7] M. Pollefeys, D. Nister, J. M. Frahm, A. Akbarzadeh, P. Mordohai, 
B. Clipp, C. Engels, D. Gallup, S. J. Kim, P. Merrell, C. Salmi, S. Sinha, 
B. Talton, L. Wang, Q. Yang, H. Stewenius, R. Yang, G. Welch, and H. 
Towles, "Detailed Real-time Urban 3D Reconstruction from Vide,." 
International Journal of Computer Vision (IJCV), Vol. 78, No. 2-3, pp. 
143-167, July 2008. 

[8] D. Scaramuzza and F. Fraundorfer, "Visual Odometry Part I: The First 30 
Years and Fundamentals," IEEE Robotics and Automation Society, Vol. 
18, No. 4, pp. 80-92, 2011. 

[9] Z. Zhang, "A Flexible New Technique for Camera Calibration," In Proc. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, 
No. 11, pp.1330-1334, 2000. 

[10] J. Fritsch, T. Kuehnl and A. Geiger, "A New Performance Measure and 
Evaluation Benchmark for Road Detection Algorithms," in Proc. 
International Conference on Intelligent Transportation Systems 2013. 
2013. 

[11] M. I. A. Lourakis, A. A. Argyros, "SBA: A software package for generic 
sparse bundle adjustment," Journal of ACM Trans-actions on 
Mathematical Software, Vol. 36, No. 1, pp. 1-30, 2009.  

 



Blocking artifact reduction in frame rate up-

conversion 

Nam-Uk Kim 

Department of Computer Engineering, Sejong University 

Digital Media System Laboratory 

Seoul, Republic of Korea 

nukim@sju.ac.kr 

Yung-Lyul Lee 

Department of Computer Engineering, Sejong University 

Digital Media System Laboratory 

Seoul, Republic of Korea 

Corresponding author 

yllee@sejong.ac.kr

 

 
Abstract— a new technology for video frame rate up-

conversion (FRUC) is presented by combining an occlusion 

detection (OD) method with blocking artifact detection. First 

motion estimation (ME) is performed to obtain a motion vector. 

Then, the OD method is used to refine the MV in the occlusion 

region. If the current block is occluded region, blocking artifact 

detection is performed. If blocking artifacts are strong, then the 

block is partitioned into smaller blocks. The experimental results 

show that the proposed algorithm provides better PSNR (Peak 

Signal to Noise Ratio) values than the conventional approaches.  

Keywords—component; frame rate up-conversion; occlusion 

detection; median filter; bi-directional motion compensation; 

blocking artifacts 

I.  INTRODUCTION  

Frame rate up-conversion is one of the main issues that 
have been discussed in recent years. It is used to convert 
video/film materials with a low frame rate to ones with a high 
frame rate so that they can be displayed with smooth motion 
and high perceived quality. FRUC is a technique which inserts 
an interpolated frame between two adjacent original frames [1], 
[2]. The existing FRUC algorithms can be divided into two 
categories. First, simple FRUC algorithms such as frame 
repetition and temporal linear interpolation [3], but these 
methods usually cause ghost artifacts and blurring artifacts. 
Therefore, in the second category, motion compensated 
techniques are used to reduce these artifacts. Such methods are 
called motion-compensated frame rate up-conversion (MC-
FRUC) algorithms. 

Many MC-FRUC algorithms have been proposed [4]-[11], 
in which full search ME is performed on the previous and 
current frames to obtain motion vectors and then the motion 
vectors are used to reconstruct the interpolated frame. The 
performance of MC-FRUC depends on the accuracy of ME and 
motion-compensated interpolation (MCI). The conventional 
approach to MC-FRUC utilizes unidirectional motion fields [4], 
[5]. A typical algorithm divides one of the two adjacent frames 
into blocks, estimates the motion vector of each block with 
respect to the other frame, and interpolates new frames along 
the motion vectors. However, this causes holes and overlaps of 
blocks in the interpolated frame. To solve this problem, BDMC 
(Bi-Directional Motion Compensation) is proposed using 
bidirectional motion fields [6], [7]. This approach divides the 

frame to be interpolated into blocks before it is actually created. 
Each block has two motion vectors, one pointing to the 
previous frame and the other to the current frame. The pixels in 
the block are interpolated by motion compensation using these 
two motion vectors. The motion vectors are either estimated 
using an algorithm of bidirectional motion estimation [8], [9], 
or derived from a unidirectional motion field. However, there 
are two essential problems that affect the performance of 
BDMC. These are blocking artifacts and the lack of 
information on occlusion. An occluded area exists in only one 
of the two existing frames and, therefore, should be 
interpolated using only one of the frames. To restrict the 
limitations imposed by this problem, a new MC-FRUC method 
that involves occlusion detection and blocking artifact 
detection is proposed.  

II. CONVENTIONAL FRUC ALGORITHMS 

In MC-FRUC, block-based ME is performed to find the 
motion vector which minimizes the sum of absolute differences 
(SAD) between the current block and prediction blocks. A few 
well known MC-FRUCs are introduced in this Section. 

A. Median Filter 

Motion vectors are not always valid for every pixel or 
object in a frame. Thus, visible artifacts occur wherever such 
wrong motion vectors are used in the frame. One effective 
method of solving this problem is to use a median filter [9]. In 
this method, a wrongly interpolated pixel is either substituted 
or averaged with its neighboring pixels. 

Motion compensated averaging is especially vulnerable 
when wrong motion vectors are used to interpolate a stationary 
area. Fig. 1 shows the 16x16 block-based BDMC process. The 
block position (m, n), which is a multiple of 16 horizontally 
and vertically, in the interpolated frame, fIP, utilizes the motion 
vector from the collocated block position (m, n) in the current 
frame, ft, to the previous frame, ft-1, as drawn as motion vector 
in Fig. 1. The dark block in the block position (m, n) in fIP is 
interpolated (averaged) by the two blocks drawn with dashed 
lines, as shown in Fig. 1, in the previous frame, ft-1, and the 
current frame, ft, by using +MV/2 and –MV/2, respectively. 

 



 

Fig. 1. BDMC (Bi-Directional motion compensation) process 

 

Static median filtering (SMF) will take the median pixel 
value of the two non-motion-compensated pixels and one 
BDMC pixel within the block position (m, n) in fIP as follows: 

 

value1 = ft-1(x, y)           (1) 

value2 = ft(x, y) 

value3 = {ft-1(x + MVx/2, y + MVy/2)  

+ ft(x – MVx/2, y - MVy/2) } /2  

fIP(x, y) = median (value1, value2, value3) 

 

where (x, y) is the pixel value within the block position (m, 
n) in fIP, ft-1(x, y) and ft(x, y) are the pixel values in the 
collocated position (x, y) of ft-1 and ft. Equation (1) signifies 
that SMF considers two collocated pixels in ft-1 and ft and one 
pixel by BDMC. This method will be effective in a stationary 
area, but it is not suitable for moving object areas. 

Dynamic median filter (DMF) is similar to SMF, but takes 
the median value of the two motion-compensated pixels shown 
as the dashed blocks in Fig. 1 and the average value of two 
non-motion-compensated (collocated) pixels as follows: 

 

value 1 = ft-1(x + MVx/2, y + MVy/2)          (2) 

value 2 = ft(x – MVx/2, y – MVy/2) 

value 3 = {ft-1(x, y) + ft(x, y)} /2  

fIP(x, y) = median (value 1, value 2, value 3) 

 

In the case where the forward and backward motion vectors 
are accurate, the compensated pixels will have quite similar 
luminance value, thus DMF will select one of them. However, 
if the motion vectors are unreliable, the compensated inputs 
may be discarded by DMF. One drawback of DMF is visible 
artifacts due to wrong motion compensation. 

III. PROPOSED METHOD 

In MC-FRUC, block-based ME is preformed to find the 
motion vector, among the candidate motion vectors, which 
minimizes the SAD between the current block and prediction 
blocks. However, motion vectors in the occlusion area are not 
reliable and lead to annoying blocking artifacts. In addition, the 
occlusion problem usually happens along the object boundary, 
where the motion vectors are not continuous and have some 
value differences compared with those of the spatial 
neighboring blocks. To overcome the existing MC-FRUC 
problem, the proposed method refines the pixel values in the 
occlusion area. If the proposed occlusion detection method 
indicates that occlusion occurs, find blocking artifacts and 
remove artifacts with de-blocking filter with median filtered 
interpolated pixels. Otherwise, BDMC is used after obtaining 
the bidirectional motion vectors. The occlusion detection 
method and blocking artifacts detection method are introduced 
in the next section. 

Finally, complete content and organizational editing before 
formatting. Please take note of the following items when 
proofreading spelling and grammar: 

A. Occlusion Detection Algorithm 

Occlusion problems are a key issue in MC-FRUC. If the 
motion vector can be properly estimated, the interpolation is 
carried out simply along the motion trajectory. However, if the 
pixel to be interpolated is only available in the previous or 
current frame in the occlusion area, it is not easy to find a 
suitable pixel. A spatial motion vector analysis of the 
neighboring block in the interpolated frame can detect the 
occlusion area. Therefore, the median value among Value 1, 
Value 2 and Value 3 in Equation (2) is selected when occlusion 
occurs. 

A full search ME based on 16x16 block with 32 search 

range is performed to find the motion vector having the 
minimum SAD value for each block. After computing the 
motion vectors in the ME process, the OD method is performed 
in a block-based manner in the interpolated frame to refine and 
enhance their accuracy. DMF is applied if occlusion occurs. 
Otherwise, BDMC is applied. The occlusion detection function 
is shown below 

 

Tx = abs (MVx (m, n - 1) + MVx (m – 1, n))                  (3) 

Ty = abs (MVy (m, n -1) + MVy (m-1, n)) 

T = abs (Tx – Ty) 

If (abs (MVx (m, n – 1) – MVx (m, n)) > T || 

 abs (MVy (m – 1, n) – MVy (m ,n)) > T) 

 Return true 

Else  

 Return false 

where MVx (m, n) and MVy (m, n) are the motion vector 
components in the x and y directions and the abs function 
returns the absolute value. 



 

 

Fig. 2. Example of occlusion detection 

 

B. Blocking artifact detection in frequency domain 

 Occlusion detection method alleviates lack of motion 
information in the occluded region, but degradations like 
blocking artifacts and ghost artifacts is induced in the occlusion 
area. To reduce these artifacts, blocking artifact detection 
method in frequency domain is proposed.  

 When the current block is decided as an occluded region, 
the block usually produces blocking artifacts because the block 
producing strong blocking artifacts have the wrong vector or 
motion discontinuity. To find the appropriate motion vector, 
the current NxN block is divided into small N/2xN/2 blocks 
and block-based motion estimation process is performed again 
for each N/2xN/2 block. This process is continued until 4x4 
block. If the smallest block has blocking artifacts, then strong 
de-blocking filter is applied to the left and top side pixels. 
Otherwise, weak de-blocking filter is applied to those pixels. 

 Conceptual 1-Dimensional view of the pixel values 
producing strong blocking artifacts are shown in Fig. 3. 

 

 

Fig. 3. Pixel values with strong blocking artifact 

 

To detect strong blocking artifacts shown in Fig. 3, the 
block boundary is investigated by using 1-D DCT-2 kernel 
shown in Eq. (4) to detect blocking artifacts. The energy of 
transform coefficients being concentrated on the secondary 
element of 1-D DCT, as shown in Fig. 4, can detect the 
information of blocking artifacts. The strong and weak 
deblocking filtering in HEVC(High Efficiency Video Coding) 
are applied to the block boundary according to the strong and 
weak blocking artifacts.  

 

  (4) 

 

 

Fig. 4. DCT-2 kernel's secondary elements 

 

IV. EXPERIMENTAL RESULTS 

 

Twenty four (24) test sequences, in which each sequence 

has 100 frames, are used in the experiments. The number of 

original video sequences is down-sampled by a factor of 2 to 

compare the proposed interpolation frames with the original 

dropped frames. The overall performance of the proposed 

method is slightly better than that of the others. 

 

 
TABLE I.    Experimental conditions. 

Block Size 16x16 pixels 

Search Range ±32 pixels 

Video Resolution 2560x1600 ~ 352x288 

 
TABLE II.    Comparison of PSNR results. 

Video 

sequences 
DMF[2] BDMC[6] 

Proposed 

method 
Traffic 35.71 35.41 36.07 

PeopleOnStreet 24.90 25.98 26.07 

Nebuta 25.58 25.29 26.02 

SteamLoco 34.50 34.29 35.03 

Kimono 31.36 32.04 32.24 

ParkScene 32.86 32.52 33.17 

Cactus 30.58 31.15 31.36 

BasketballDrive 27.23 27.43 27.60 

BQTerrace 29.43 29.28 29.91 

BasketballDrill 28.81 29.14 29.28 

BQMall 28.42 29.12 29.12 

PartyScene 29.01 30.02 29.84 

RaceHorsesC 25.42 25.26 25.72 

BasketballPass 32.41 32.16 32.66 

BQSquare 34.67 35.91 35.05 

BlowingBubble 31.90 32.12 32.08 

RaceHorses 26.43 26.30 26.95 

FourPeople 39.96 40.26 40.33 

Johnny 40.10 40.90 40.72 

KristenAndSara 41.60 41.94 41.93 

BasketballDrill 

Text 
28.69 29.11 29.15 



ChinaSpeed 25.16 25.63 25.56 

SlideEditing 41.86 43.45 42.58 

SlidShow 52.03 52.67 52.43 

 

 

V. CONCLUSION 

 

In this paper, the proposed FRUC using Occlusion 

detection and blocking artifacts detection method shows 

improved image quality in the interpolated frames compared 

with the other methods. However, when observing the 

interpolated frames carefully, blurring can still be seen in the 

interpolated frames. Therefore, further research is necessary in 

order to reduce blurring in moving object areas. 
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