HW2.

정보보호공학과 01921061 황송이

September 22, 2019

1 Continuity and Uniform Continuity

f is continuous at \hat{x} iff for any convergent sequence $\{x_i\}_{i\in\mathbb{N}}$ to \hat{x} , $f(x_i)$ also converges to $f(\hat{x})$.

1.1 Example

 $f: \mathbb{X} \to \mathcal{M}$ is continuous, and \mathbb{X} is compact then f is uniform continuous on \mathbb{X}

1.2 Proof

Since f is continuous, $\forall x \in \mathbb{X}, \forall \delta > 0, \exists \epsilon_x > 0$ such that $\parallel f(y) - f(x) \parallel < \delta$ implies that $y \in B^0(x, \epsilon_x)$. Since \mathbb{X} is compact, $\{B^0(x, \epsilon_x)\}_{x \in \mathbb{X}}$ covers \mathbb{X} (i.e. $\bigcup_{x \in \mathbb{X}} B^0(x, \epsilon_x) \supset \mathbb{X}$) Moreover, Since \mathbb{X} is compact, there exists a finite number of open covering, say $\{x^i\}_{i=1}^k$ such that $\bigcup_{i=1}^k B^0(x_i, \epsilon_x) \supset \mathbb{X}$. Then, pick ϵ such that $\epsilon = \min_{i=\{1\cdots k\}} \epsilon_{x_i}$. It implies that ϵ satisfies the property.

2 Twice Differentiable

$$g''(s) = \left\langle (y-x), \frac{d^2 f(x+s(y-x))}{dx^2} (y-x) \right\rangle$$

2.1 Example

Then, Set $(1-s)g''(s) = \frac{d}{ds}((1-s)g'(s) + g(s))$

2.2 Proof

$$\begin{split} \int_0^1 (1-s)g''(s)ds &= \int_0^1 \frac{d}{ds}((1-s)g'(s)+g(s))ds \\ &= \int_0^1 d((1-s)g'(s)+g(s)) \\ &= 0 \cdot g'(s)+g(1)-g'(s)-g(0) \\ &= g(1)-g(0)-g'(s) \\ &= f(y)-f(x)-\langle \nabla f(x),y-x \rangle \end{split}$$