Homework2

Jung Kyoo Shin

October 2019

1 Armijo Gradient

```
f(x) = x^2 exp(-x) - x
x0 = 0.5 \text{ and } x0 = 2
To calculate Armijo gradient algorithm, I've assumed \alpha as a random number
betrween 0 and 1.
   Step 1. Compute the Descent Direction
h_i = h(x_i) = - \bigtriangledown f(x_i)
Stop if \nabla f(x_i) = 0
\nabla f(x) = -x^2 exp(-x) + 2exp(-x)x - 1
Step 2. Compute the step size
Find the max argument of \alpha_m, set it as \lambda
f(x_k + \alpha_m d_k) \le f(x_k) + \alpha_m \beta \nabla f(x_k)^T d_k
\lambda \in (0, 2(1 - \alpha/M)) where M is larger then Double differential of f(x).
Step 3. Update x
x_i + 1 = x_i + \lambda h_i
and go back to step 1.
   f(x_k + \alpha_m d_k) \le f(x_k) + \alpha_m \beta \nabla f(x_k)^T d_k
\leq \lambda \parallel \nabla f(x_i)^2 \parallel (M/2\lambda - (1-\alpha))
by mean value Theorem
   \lambda \in (0, 2(1 - \alpha)/M)
   To calculate armijo gradient algorithm when x_0 = 0.5, h_0 becomes -0.5451.
12, 0.0, 0.0, , , ]
   Eventually, h_i converges to be 0.
```

 $[h_1, h_2, h_3...] = [-5.0693825587533325, -3.5393665775984573e - 07, -1.5543122344752192, 0.0, 0.0, ,,]$

When $x_0 = 2$,