1.3 Directional Derivatives

 

Definition 3.1

 

Let  be a differentiable real-valued function on  , and let  be a tangent vector to .

Then the number

 

is called the derivative of f with respect to

 

 is directional derivative.

 

Lemma 3.2

 If  is a tangent vector to, then

 

proof

Let  then

we use the chain rule to compute the derivative at t= 0 of the function

Since

we obtain

Q.E.D

 

Lemma 1.4.6

Let  be a curve in  and let  be a differentialble function on . Then

 

 

proof

Since

From lemma 1.3.2, that

By chain rule, the lemma is proved. ()

 

By definition,  is the rate of change of  along the line through  in the  direction.

 

1.5 1-forms

The differential of the

 

 

1 form :  : Tangent space 를 스칼라로 보내는 함수

 

If , and  then

 

 is 1 form such that

 

  : f : scalar function, 1 form : scalar function , so...

 

Definition 5.1 : Definition of 1-form

A 1-form  on  is a real-valued function on the set of all tangent vectors on such that  is linear at each point, that is

for any number  and tangent vectors  at the same pont of  

Definition 5.2

For , the differential df of f is the 1 form such that

 

 

 는 의 모든 방향으로의 f의 변화율 즉,

 

 

Remind the following simple form

 

  and

 

 

 Example

(1)

(2)

 when

 

Simply We regard it as

, so that

.

Thus,

,

Corollary 1.5.5

 

 

Lemma 1.5.7

 

proof)

 

Since

  

1.6 Differential Forms

Differential Forms는 Associative와 Distribution은 성립 Group은 된다.

Commutative는 성립하지 않으므로 Ring, Field는 안된다.

 

Example

Computation of Wedge Products : p29

 Remind : 

(1)

(2) Let  

 

Lemma

If   are 1-forms, then

 

proof

Let

,  

 

Definition : The exterior derivatives

If  is a 1-form on , the exterior derivative of  is

the 2-form

Meaning :

 ,

 

 

Theorem

Let  be functions,  be 1-forms.

 

proof

For final function :

Let

 ,

 

 

 

2.5 Covariant Derivatives

Definition

Let  be a vector field on , and let v be a tangent vector field to at the point .

Then the covariant derivative of  with respect to  is the tangent vector

 

 

 

  measures the initial rate of changes of  as p moves in the  direction.

 

 

Lemma

If

 

is a vector field on  and  is a tengent vector at , then

 

 

proof of Lemma

By definition

 

By definition of  , the lemma is proved.

(Q.E.D)

 

It means that

 

 

 

 conserves the linearity and Leibnizian properties of covariant derivartives.

 

 

The covariant derivative of a vector field  with respect to a vector field  :

 

 

If

  then

 

 

 

Basic Identity of   :

 

The example of the covariant derivative of a vector field with respect to a vector field.

 

 

 

 

 -------------------------------

 

 

 

 

2.6 Frame Fields

Definition

Vector fields  on  constitute a frame field on  provided

 

 

where   is the Kronecker delta

 

2.7 Connection Forms

Express the covariant derivatives of these vector fields in terms of the vector fields themselves.

 

then

The coefficient  depends on the particular tangent vector , so that

 

Lemma : The connection forms (1-form) of the frame field

 

Let,  be a frame field on . For each tangent vector  to  at the point . Let

Then each  is a 1-form, and  .

proof By the definition 5.1 of ch.1, we should a linearity of .

The 1-form is proved by linearities.

To prove , we remind that  and , where  is a constant value. Thus,

Q.E.D

Meaning of  :

The initial rate at which  rotates toward  as  moves in the  direction.

Theorem

For any vector field  on   

---------

By , .  Therefore,

The connection forms   as the entries of a skew-symmetric matrix of 1-forms.

 

 

 

Relation to the Frenet Formulas

 

 Frenet Formula는 임의 커브에 대한 것 결국 1-dimension

 Connection forms 는 임의 Tangent vector or Vector field 3-dimension

이 차이로 약간 다르다.

Frenet Formula는 curve에 대한 정보 T, N, B 제공

Connection forms 는 frame field의 rate of rotation 정보 제공 -> 직접적인 해답을 준다.

More fundamental

Example

Assume that the natural frame field  on and a frame field  be connected as

Attitude Matrix of the frame field

where

The differential of  is defined as

The entries of  are 1-forms

Theorem

If  is the attitude matrix and  the matrix of connection forms of a frame field , then

or equivalently

Sketch of Proof

Example

Attitude matrix of the cylindrical frame field

It can be reduced as

2.8 Structual Equation

The connection form is the rate of rotation of a frame field.

Furthermore, the frame field itself can be described in terms of the 1-forms

Definition

If  is a frame field on , then the dual 1-forms  of the frame field are the 1-forms such that

for each tangent vector  to  at the point

... Tangent Vector 를 Frame Field  에 정사영 하는 것이다.

... Connection Form은 에 정사영 하는 것이다.

... 둘다 i-th component의 coefficient

.... The dual 1 form은 Frame Field에 대한 Tangent Vector 성분이며

... Connection Form은 Frame Field에 대한 다른 Frame field의 v 방향으로의 변화율이다.

Example

In case of the natural frame field   , the dual forms are just  such that

hence  

Dual form 을 사용하여 the orthornormal expansion  를 이렇게 쓸 수 있다.

  ....(1)

..... Dual form dx 의 개념이므로 Frame field 에 대하여 Tangent Vector를  의 형태로 쓸 수 있음을 의미한다.

Lemma

Let   be the dual 1-forms of a frame field . 

Then any 1-form  on  has a unique expression

proof

2->3 항의 경우는 1-form 정의에서 간단한 Inner Product 이므로 당연하다.

 는 Vedctor 이다.  를 entity로 한다. (1) 참조

.... 임의의 1 form은 Frame Field의 dual form()과 Frame field의 임의 1-form간() 1차 결합으로 표현 가능하다.

Example

a Frame field  and the natural frame field

The dual formulation

has same coefficient.

** Frame field 와 Dual formulation (dual form의 결합)은 같은 coefficient.

Really? 증명하자.

바로 위의 Lemma 에서

즉,  는 the natural frame field  의 dual form

By definition of

By definition of E_i

그래서 놀라운 결과!!

Frame Field에 대한 Natural Frame Field의 계수는

Frame Field에 대한 dual 1-form ()에 대한 Natural Frame Field의 dual form ()의 계수와 같다.

즉, 와  는 같은 계수를 가진다.

다시말해, 와  는 같은 축상에 있으며 전자가 Frame Field (vector)이고 후자는 1-form인 것.

 

자연스럽게 1-form에 대한 미분 : the exterior derivatives가 유도된다.

 

Theorem (Cartan Structual eqation) : Exterior derivatives

Let  be a frame field on  with dual forms  and connection forms  ()

The exterior derivatives of these forms satisfy

(1) The first structual equations :

 

   .... It looks like that a dual form of the connection forms as

 

(2) The second structual equations :

 

 

증명에 필요한 것들

 

 

  :

  ,

 

Proof of the first structual equations

 

 

 

Proof of the second structual equations

For functions

 

 

Relation between dual forms and Frame fields

 

Chapter 3. Euclidean Geometry

3.1 Isometries of

Definition

An isometry (or rigid motion) of  is a mapping  such that

for all points  in

Lemma

If  is an orthogonal transformation, then  is an isometry of

proof

 

Lemma 

If  is an isometry of  such that , then  is an orthogonal tramsformation.

3.2 The tangent map of an isometry

An arbitrary mapping  has a tangent map  that carries each tangent vector  at  to

a tangent vector  at

 

Isometry에서  는 preserve됨

Example : 대표적인 는 Orthogonal or Orthonormal Matrix

 

3.3 Orientation

Thus,

Lemma

Let  be a frame at a point of .  If  and , then

where

proof

위 식과 이 식을 비교하면 자명하다.

cross product는 Form 연산과 똑같이 보인다.

Theorem

Let  be a tangent vectors to  at . If  is an isometry of , then

3.4 Euclidean Geometry

Both Dot product and Cross product are preserved by an isometries.

Velocity is preserved by arbitrary mappings ,

 ->  ,  is a tangent vector.

But acceleration os not preserved by arbitrary mappings.

However, Euclidean geometry 에서는 속도와 가속도가 모두 보존된다.

Theorem 4.2

Let  be a unit-speed curve in  with positive curvature, and let  

be the image curve of  under an isometry  of . Then

3.5 Conguence of Curves

Theorerm 5.3

If  are unit-speed curves such that  and

k Curvature , t : Torsion

Remind : Frenet Formula

Basic Formula for the Frenet Formula

, , Binormal Vector ,

Chapter 4. Calculus on a Surface

4.1 Surface in

Definition 4.1.1 : coordinate patch

A coordinate patch  is a one-to-one regular mapping of an open set  of  into

Proper patch

A coordinate patch that has an inverse function  is continuous.

Definition 4.1.2 : surface in

A surface in  is a subset  of  such that for eacg point  of  there exists a proper patch in  

whose image contains a neighborhood of  in

Example

The surface . Every differentiable real-valued function  on  determines a surface  of

: The graph of , that is, the set of all points of  whose coordinates satisfy the equation .

Evidently  is an image of the Monge patch : (다음과 같은 형식의 patch)

 

hence by the remarks above,  is a simple surface.

Theorem 4.1.4: surface by Implicit function theorem

Let   be a differentiable real-valued function on , and  a number.

The subset  of  is a surface if differential  at any point of .

Sketch of proof

  if  

이러면 최소 z에 대하여 미분 방정식을 풀 수 있다. 이렇게 되면 최소한 이렇게 표시할 수 있다.

  .... Monge patch 형태로 만들 수 있다.

Example : Sphere at

 when    -> Sphere의 중심일때만 0이 된다.

4.2 Patch Computation

Definition

If is a patch, for each point  in :

(1) The velocity vector at  of the u-parameter curve, , is denoted by

(2) The velocity vector at  of the v-parameter curve, , is denoted by

The vectors  and  are called the partial velocities of  at .

If an Euclidean coordinate function is defined by a formula

Then the partial velocity functions are given by

무엇으로 편미분 하느냐로 결정됨 :

Definition

A regular mapping  whose image lies in a surface  is called a parameterization of the region  in

The regularity of  :  is never zero / the partial velocity vectors of  are linearly independent.

Definition

A ruled surface is a surface swept out by a straight line L moving along a curve .

The various positions of the generating line L are called the rulings of the surface.

Such a surface always has a ruled parameterization

 : Base curve,  : Director curve

Notion 1

 

same to Lemma 2.1.8 at p47

4.3 Differential Functions and Tangent Vectors

Suppose that

 : a real valued function defined on a surface .

 : a coordinate patch in

then

A Coordinate Expression :  

For a function , each patch  in  gives

a coordinate expression  for

즉, x 도 F도 모두 M에 있다.

Lemma 4.3.1

Overlapped Patch

Definition

Let  be a point of a surface  in .

A tangent vector  to  at  is tangent to  at  provided  is a velocity of some curve in .

Tangent plane of  at  :

 is the linear approximation of the surface  near

Definition

A Euclidean vector field  on a surface  in  is a function

that assigns to each point  of  a tangent vector  to   at .

A Euclidean vector  at a point point  of  is normal

if

A Euclidean vector field  on   is a normal vector field  provided each vector  is normal to .

**  은 기본적으로 . 따라서 하나의 Dimension이 남는다.

그러므로 normal vector  나머지 하나의 Dimension을 만든다.

Lemma 4.3.8 (Gradient vector is perpendicular to Tangent plane)

If  is a surface in , then the gradient vector field  is a nonvanishing

normal vector field on the entire surface .

sketch of proof

 을 보이면 된다.

 인 것은  (by theorem 4.1.4 에서)

Definition 4.3.10

Let  be a tangent vector to at  , and let  be a differentiable real-valued function on .

The derivative  of  with respect to  is the common value of  for all curves  in  with initial velocity .

Tips from the exercise 4.3

1. Let  be a patch in .  If  is the tangent map of ,

    ,

2. If  is a differentiable function on , then

   

4.4 Differential Forms on a Surface

Surface 이므로 2-form 을 사용하게 된다.

2-form 은 2개의 tangent vector에 대응하여 만들어진다.

2개의 tangent vector는 하나의 surface를 정의하기 때문

 

Definition 4.4.1

A 2-form  on a surface  is a real-valued function on all ordered pairs of tangent vectors  to such that

(1)  is linear in   

(2)

 

all p-forms with p>2 is zero, since the dimension of surface is 2.

Lemma 4.4.2

Let  be a 2-form on a surface , and let  be (linearly independent) tangent vectors at some point of . Then

 

 

proof

Using the linearity of   (by the definition 4.1 (1))

 

Wedge product에 의한 2-form 생성, surface 이므로 2개의 1-form Wedge product로 만들어진다.

 

Definition 4.4.3

If  and  are 1-forms on a surface , the wedge product  is the 2-form on  such that

for all pairs  of tangent vectors to

 

: 매우 중요한 정의 : (ad -bc :  에서 유도 : determinent 개념)

If  is a p-form and  is a q-form, then

The differential calculus of forms is based on the exterior derivative .

0-form : function

1-form :               such that

Definition 4.4 :Exterior Derivative

Let  be a 1-form on a surface . Then the exterior derivative  of  is the 2-form such that for any patch  in .

.... Look like Lie Derivative or (ad-bc .. determinent a : u에 대한 편미분, b : v에 대한 편미분, c : u에 대한 1 form, d : v 에 대한 1-form)

....Regard   as  . It is easy to understand.

.... 우측 첫째항에서 x는 v에 대해 편미분되어 u항 살아있는 벡터가 된다 (). 이것이 에 의해 1 form이 된다.

.... 다음 1 form을 u에 대해 미분한다.

Example (my)

.... , ,

Definition 4.4.4는 불완전한 정의

What we have actually defined is a form  on the image of each patch  in .

따라서,  와 가 on the overlap of  에서 같을 때만이  를 정의할 수 있다.

Lemma 4.4.5 : How to use the definitions and calculus for the 2-forms.

Let  be a 1-form on . If  are patches on , then  on the overlap of .

proof

It means that

Set  on the overlap of  , then

then by lemma 4.4.2

증명 되려면

임을 증명하면 된다.

즉 By definition 4.4.4

에서

임을 증명하면 된다.

 이므로...

 . . .  

고로 이들을 잘 정리하여 은근과 끈기로 전개한 후 빼주면 증명 된다.

Theorem 4.4.6

If  is a real-valued function on , then .

proof

Let

(는 patch 이므로 벡터 형태다.  와 동일한 차원을 가진다. 고로 로 보면 차원이 맞지 않는다.

 단, 는 스칼라 이므로 이렇게 정의 되면 쉽다.

(1) Tangent 벡터  형태로 픽스 되면 Tangent의 정의 :  에 의해  

(2) Tangent 벡터에 미분 정의가 들어가 있으면 i.e.  Lemma 1.4.6 에 의해

 

  즉,  에서  (f 가 x의 함수가 아니므로) 가 된다.

의 두 가지를 모두 기억해야 한다.)

Example 4.4.7 : Differential forms on the plane

Let  be the natural coordinate functions.

 the natural frame field on .

The differential calculus of forms on  is expressed in terms of  as follows:

If  is a function,  is an 1-form, and  is a 2-form, then

(1)  where .

(2) , where .

(3) for  and  as above,

                   

(4)  

(5)

Definition 4.4.8 : closed, exact

A differential form  is closed if its exterior derivative is zero, ; and  is exact if it is the exterior derivative of some form .

Every exact form is closed since  for an exact .

 

 

Some important calculus

 are functions on , and   is a 1-form.

(1) ,  

(2)   ->   

(3)

    (a)

    (b)

    (c)

since

  (ad -bc 로 기억하자..)

 

Set , then

* Differential form 에 의한 함수 Derivative의 Wedge product는  Determinant 꼴

* 단순 Differential form의 Wedge product는 Differential form의 단순 곱

4.5 Mapping of surfaces

Definition 4.5.1

A function   from one surface to another is differentiable provided that each patch  in  and  in  the composite function  is Euclidean differentiable (and defined on an open set of ). is then called a mapping of surfaces.

 

Definition 4.5.2

Let  be a mapping of surfaces.

The tangent map  of  assigns to each tangent vector  to the tangent vector  to  

such that if  is the initial velocity of a curve  in , then  is the initial velocity vector of the image curve  in .

 

 

Tangent map   is a linear transformation, so that  preserves velocities of curves.

 

  is regular : all of its derivative maps are one to one.

 Linera algebra에서 one to one 이면 isomorphism

Theorem 4.5.2

Let  be a mapping of surfaces, and suppose that  is a linear isomorphism at some one point p of M

Then there exist a neighborhood  of p in such that the restriction of  to  is a diffeomorphism onto a neighborhood  of  in .

 

* 0-form을 가정하면 0-form은 a real-valued function  

  1. Let  be a mapping of surfaces.

  1-1 is a functon on , it means that , then there is no reasonable general way to move  over to a function on ,

        since  is a function on , not a function on

       

  1-2 s a functon on ,  then we pull  back to the composite function  on . ( f(y in N) on N... 고로 f(F(x in M)) on M 이건 정의 된다. Pull-back 개념)

 

즉, N 에 정의된 form을 pull-back 해서 M위에 정의한다.

Definition 4.5.6

Let  be a mapping of surfaces,

(1) If  is a 1-form on , let  be the 1-form on  such that

           

      for all tangent vectors  to

(2) If  is a 2-form on , let  be a 2-form on  such that

     

    for all tangent vectors  on

* 0-form의 경우  instead of

   

Theorem 4.5.7

Let  be a mapping of surfaces, and let  and  be forms on . Then

(1)

(2)

(3)

proof

(1) Let  then

(2) Let  then

(3) Let  be a 1-form then  is a 2-form such that .

  In addition, let  such that  and , then    

      Therefore,

* Full-back to an Exterior Derivative of a form is equal to an exterior derivative of a full-back to a form.

즉, Full-Back 연산은 미분과 관계 없는 무슨 스칼라 상수 처럼 작용하는 연산이다.

4.6 Integration Forms

 

Let  be a curve segment on a surface M.

Set

  

 

 

Definition 4.6.1

Let  is a 1-form on . and let  be a curve segment in . Then the integral of  over  is

 

Problem 2.

,  

(a) If , compute

 

sol)

 에서

,  고로   

(기억할 것,  같은 Form 연산은 form과 tangent vector의 inner product를 의미 그래야 scalar가 나온다. ..기본 가끔, dt 연산도 있다. 2개 기억)

 

 

 

Theorem 4.6.2 

Let  be a function on . and let  be a curve segment in  from , then

 

proof)

By definition,

whereas,  (form과 tangent vector의 inner product가 아닌 두번째 정의, 증명에 자주 이용)

 

 

 

If  is a 2-form on , then the pullback, then  is..

 

 

              ... 원래 U1 U2 함수이다. pull-back 되었으므로..,  정의에 의해 M위의 xu xv의 함수로 표현하는 것이다.

 

Definition 4.6.3

Let  is a 2-form on , and let  be a 2-segment in . The integral of  over  is

 

Definition 4.6.4 

The edge curves of  are the curve segment  such that

 

The boundary  of the 2-segment x is the formal expression

 

The integral of  over the boundary  of x is

 

 

 

Theorem 4.6.5 : Stokes' theorem

If  is a 1-form on , and  is a 2-segment, then

 

 

proof

 

 .. 우항의 적분은 x가 아닌 R range 이다.

 

Let   then

 

 

Set the Rectangle R is given as  

 

By definition,  

 

 

따라서,  

 

 

마찬가지로

 

 

 

Q.E.D

 

적분 경로는 밑이 출발점이고 위점이 도착점이다. 즉,

  에서 a 에서 출발하여 b 점에 도착하는 방향이다.

Problem

4.6.1

4.6.2

, ,

(1)   by defintion 4.6.1

...답은 2

(2)

 

4.6.4  중요함 풀어봐야 함.

 

4.6.5

, ,

(b) prove

(c)

4.6.7

(a)

4.6.8

 

4.6.10

by theorem 4,5,7

적분 경로는 밑이 출발점이고 위점이 도착점이다. 즉,

  에서 a 에서 출발하여 b 점에 도착하는 방향이다.

답은 -1/2 이다.

4.7 Topological Properties of surface

 

Definition 4.7.1  : Connected

A surface connected provided that for any two points  and  of  there is a curve segment in  from  to .

Lemma 4.7.2 : Compact

A surface  is compact if and only if it can be covered by the images of a finite number of 2-segments in .

 

Lemma 4.7.3 : A Properties of compact

A continuous function   on a compact region  ina surface  takes on a maximum (or minimum) at some point of .

 

Definition 4.7.4 : Orientable

A surface is orientable if there exists a differential (or merely continuous) 2-form  on  that is nonzero at every point of .

.... 즉 미분가능하고 0이 아닌 2-form이 존재한다는 것. Good... 그래서 면적에 대한 정보를 알 수 있고 이는 Cross-Product 기반이므로

 

Proposition 4.7.5

A surface  is orientable if and only if there exists a unit normal vector field on .

If is connected as well as orientable, there are exactly two unit normals, .

 

Definition 4.7.6 : homotopic

A closed curve  in is homotopic to a constant provided there is a 2-segment (called a homotopy) defined on

such that   is the base curve of x and the other three edge curves are constant at .

... 즉 어떤 p 점에서 어떤 loop 가 존재한다는 것

 

Definition 4.7.7 : Simply Connected

A surface  is simply connected provided it is connected and every loop in is homotopic to a constant.

 

Simply connected 와 differential form  가 closed :  을 생각해보자.

 

Lemma 4.7.8

Let  be a closed 1-form on a surface . If a loop  in  is homotopic to a constant, then

 

proof:

 (by the definition of the closed differential)

 

  (by Stokes theorem)  therefore,  

 

 Q.E.D)

 

 Differential  의 의미

Let  and  . Assume that , Let a cross product of the normalized vector of  and

 OK.

Lemma 4.7.9 (Poincare)

On a simply connected surface, every closed 1-form is exact.

Note.

1. Closed : ,  exact : 가 어떤 form의 exterior derivative 일때.  

    Thus,

2. Path independent : if  are curve segment from p to q, then

proof

Simply connected 이므로  위에 정의되는 임의의 curve segment  에 대하여

 정의 가능, 여기에 대해 p에서 출발하며  되는 curve  를 정의하면

양변 미분하면

Q.E.D

Theorem 4.7.10

A compact surface in  is orientable.

Theorem 4.7.11

A simply connected surface is orientable.

4.8 Manifolds

Definition 4.8.1

A surface is a set furnished with a collection  of abstract patches in satisfying

(1) The covering axiom  

      The images of the patches in the collection  cover .

(2) The smooth overlap axiom

      For any patches  in , the composite functions  and  are Euclidean differentiable,

    and defined on opens sets of .

(3) The Haussdorff axiom

      For any points  in , there exist disjoint patches  with  in  and  in .

* Abstract surface  에서 should be defined the velocity of a curve in .

   ... Tangent vectors, vector fields, differentiable forms...

Definition 4.8.2  : General Definition of velocity on an abstract surface

Let  be a curve in an abstract surface .

For each , the velocity vector  is the function such that

for every differentiable real-valued function  on .

Definition 4.8.1을 사용하여 Manifold를 정의한다. (4.8.1의 이 됨)

Definition 4.8.2 : Manifold

An n-dimensional manifold is a set furnished with a collection  of abstract patches

(one-to-one functions ,  is an open set in ) satisfying

(1) The covering property

            The images of the patches in the collection  cover

(2)The smooth overlap property

            For any patches  in  the composite functions  and  are Euclidean differentiable,

    and defined on opens sets of

(3) The Haussdorff axiom

            For any points  in , there exist disjoint patches  with  in  and  in .