Foundation of Nonlinear Optimization-1

Foundation of Nonlinear Optimization-1

Norm

A Norm in $\mathbb{R}^n $ is a function

$$
|| \cdot || : \mathbb{R}^n \rightarrow \mathbb{R}_{+}$$

  1. $||x|| = 0$ iff $x = 0$
  2. $|| \lambda x || = |\lambda| ||x|| \;\;\;\forall \lambda \in \mathbb{R}, \; x \in \mathbb{R}^n $
  3. $|| x + y || \leq ||x|| + ||y|| \;\;\; \forall x, y \in \mathbb{R}^n $

Open Set and Closed Set

Definition 1. Open ball

$\forall x \in \mathbb{R}^n$ and $\rho > 0$, by

$$
B^{o}(x, \rho) = \{ z \in \mathbb{R}^n | ||z – x || < \rho \}$$ we denote an open ball with radius $\rho$.

openball
Figure 1. Open Ball

Definition 2. Open Set

A Set $Z \subset \mathbb{R}^n$ is said to be a Open,

$$
if \; \forall x \in Z \;\; and \;\; \exists \rho > 0, \;\; \exists B^{o}(x,\rho) \subset Z$$

openset
Figure 2. Open Set

Example

An open ball $B^{o}(x, \rho)$ is am open set.

Definition 3. Closed Set

A set $Z \subset \mathbb{R}^n$ is said to be Closed (Set) , if its complement in $\mathbb{R}^n$ is open.

  • 즉, $Z^{c}$ 가 Open Set 이면 $Z$ 는 Close Set.

Definition 4. Compact

A set $Z \subset \mathbb{R}^n$ is said to be Compact , if every open covering of $Z$ has a finite open covering

Note

A Compact set in $\mathbb{R}^{n}$ is closed and bounded.

  • 모든 원소의 Open subset 으로 Infinite 하게 Cover되는 Open Set의 여집합이면 Closed Set 이면서 Finite하게 Cover 된다.

Example

Is a set $(0, 1]$ closed?
openset

Set $u_i = (0, 1 – \frac{1}{i}]$. The set $(0, 1]$ is OPEN since $\bigcup_{i=0}^{\infty} u_i \supset (0, 1] $ through $\bigcup_{i=0}^{\infty} u_i \supseteq (0, 1 – \epsilon]$.

  • Finite가 아니므로 Open

Sequence

A Sequence is a function from $\mathbb{N}$ to $\mathbb{R}^n$ such that

$$
\{x_i\}^{\infty}_{i=1}$$

A Subsequence of $\{x_i\}^{\infty}_{i=1}$ is a set $\{ x_i\}_{i \in \mathbb{K}}$ where $\mathbb{K} \subset \mathbb{N}$ has an infinite number of elements.

Limit Point and Accumulation points

Definitioon 5. Limit Point (Important!)

A sequence $\{x_i\}_{i \in \mathbb{N}}$ is said to be converge to $\hat{x}$,

$$
if \;\; \lim_{i \rightarrow \infty}\left \| x_i – \hat{x} \right \| = 0.$$

or, (다음 정의가 더 중요하다.)

$$
\forall \epsilon > 0 \;\; and \;\; \exists i_0 \in \mathbb{N}, \;\; \exists \left\| x_i – \hat{x}\right\| < \epsilon , \;\; \forall i \geq i_0$$ The point $\hat{x}$ is called a limit point.

Definitioon 6. Accumulation point

A point $x^*$ is called an accumulation point if,
There exists an infinite subsequence , $\{x_i \}_{i \in \mathbb{K}}$ such that $x_i \overset{\mathbb{K}}{\rightarrow} x^{*}$
즉,

$$
\lim_{\overset{i \rightarrow \infty}{ i \in \mathbb{K}}} \left\| x_i – x^* \right\| = 0$$

  • 처음부터 시작하여 무한하면 Limit Point, 임의의 시작점에서 무한하면 Accumulation point

HW. 가산집합(countable set)과 가부번 집합(denumerrator set)에 대하여 알아올 것.

Theorem 1.

$Z \subset \mathbb{R}$ is closed iff a sequence $\{x_i\}_{i \in \mathbb{N}} \subset Z$ converges to $\hat{x}$ (i.e. $x_i \rightarrow \hat{x}$) then $\hat{x} \in Z$.

proof

Sufficient

Suppose that $\hat{x} \notin Z \Rightarrow \hat{x} \in Z^c$.
Since $\exists \rho > 0$ such that $B^o(\hat{x}, \rho) \subset Z^c$, and, by assumption, $x_i \rightarrow \hat{x} \;\; for \;\;\rho > 0$, $\exists i_0 \in \mathbb{N}$, such that $\left| x_i -\hat{x} \right| < \rho, \;\; \forall i \geq i_0$. i.e. $x_i \in B^o(\hat{x}, \rho) \subset Z^c, \;\; \forall i \geq i_0$ (Open Set의 정의에 따라 이는 당연, 즉, $x_i \in Z^c$).

However, by assumption, $x_i \in Z$. 따라서 이는 가정에 모순이다.

Necessity

Suppose that $Z$ is not close (i.e. open), it means that $Z^c$ is not open (i.e. close).
,and $\exists \hat{x} \in Z^c$ (결론이 반대라고 가정하면..) such that $\forall \rho > 0, B^o (\hat{x}, \rho) \nsubseteq Z^c $ (i.e. $B^o (\hat{x}, \rho) \cap Z^C = \varnothing$). (가정과 결론이 반대인 경우가 성립한다고 가정하면)
Let $\rho_i = \frac{1}{i}$, and pick $x_i \in B^o (\hat{x}, \rho_i) \cap Z$, then $x_i \rightarrow \hat{x}, \;\; x_i \in Z, \;\; \forall i$. However, $\hat{x} \in Z^c$, and it is contradict to the assumption.

[Q.E.D]

Definition 7. Monotone Decreasing Sequence

$$
x_1 \geq x_2 \geq x_3 \geq \cdots$$

If a monotone deceasing sequence has an accumulation point, then the sequence must converghe to it.

Theorem 2

If $Z \subset \mathbb{R}$ is compact, then any dequence $\{ x_i\}_{i \in \mathbb{N}} \subset Z$ must have at least one accumulation point.

proof

Accumulation point가 아니라면 다음 그림과 같이 될 것이다.

fig03

Suppose that $x_i \overset{\mathbb{K}}{\rightarrow} \hat{x}$, but $x_i \overset{\mathbb{L}}{\nrightarrow} \hat{x}$
(It means that

$$
\exists \; \epsilon > 0 \;\;\text{such that}\;\; \forall i_0, \;\; \left\| x_i – \hat{x} \right\| \geq \epsilon \;\; \exists \; i \geq i_0$$

i.e.

$$
\exists \; \mathbb{L} \subset \mathbb{N}\;\;\text{such that}\;\; \left\| x_i – \hat{x} \right\| \geq \epsilon \;\; \forall i \in \mathbb{L}$$

)

Pick $i_1 \in \mathbb{K}$ satisfying that $\exists i_1 \geq i_0$ such that $\left\| x_{i_1} – \hat{x} \right\| < \frac{\epsilon}{4}$ (가정에서 $i \in \mathbb{K}$ 이므로 이렇게 잡을 수 있다.)
Pick $i_2 \in \mathbb{L}$ satisfying that $\exists i_2 \leq i_1$ such that $\left\| x_{i_2} – \hat{x} \right\| \geq \epsilon$ (가정에서 $i_2 \in \mathbb{L}$ 이므로 이렇게 잡을 수 있다.)

Since $i_2 > i_1$ and $\left\| x_{i_1} – \hat{x} \right\| < \left\| x_{i_2} - \hat{x} \right\|$, it implies that $x_{i_2} \leq x_{i_1}$. (제곱을 사용하여 간단히 증명할 수 있다. 그 결과는 다음과 같다.)

fig04

Therefore, $x_{i_1} – x_{i_2} \geq \frac{3}{4} \epsilon$ .

Pick $i_3 \in \mathbb{K}$ such that $i_3 > i_2$ then $x_{i_3} \leq x_{i_2}$, and, by assumption,

$$
\left\| x_{i_3} – \hat{x} \right\| < \frac{\epsilon}{4}$$ Thus,

$$
\begin{align*}
x_{i_2} – x_{i_3} &= x_{i_2} – x_{i_1} + x_{i_1} – x_{i_3} \\
&\leq -\frac{3}{4} \epsilon + \frac{\epsilon}{2} \\
&\leq -\frac{1}{4} \epsilon
\end{align*}$$

이는 가정 ($x_{i_3} \leq x_{i_2}$) 에 모순.
[Q.E.D]

Continuity and Uniform Continuity

We say a function $f : \mathbb{R}^n \rightarrow \mathbb{R}^{m}$ is continuous at $x \in \mathbb{R}^n$

$$
\text{If}\;\; \forall \delta > 0, \;\; \exists \varepsilon > 0 \;\;\text{such that}\;\; \left\| f(y) – f(x) \right\| < \delta \;\; \forall y \in B^o(x, \varepsilon)$$ (Locally Continuouis)

We say a function is uniform continuous

$$
\text{If}\;\; \forall \delta > 0, \;\; \exists \varepsilon > 0 \;\;\text{such that}\;\; \forall x \in \mathbb{R}^n,\; \left\| f(y) – f(x) \right\| < \delta \;\; \forall y \in B^o(x, \varepsilon)$$ ($\forall x \in \mathbb{R}^n$ 조건에 의해 매우 강력한 Continuous 가 된다, 전체 영역에 대한 것이므로..)

HW 2.

$f$ is continuous at $\hat{x}$ iff for any convergent sequence $\{x_i \}_{i \in \mathbb{N}}$ to $\hat{x}$, $f(x_i)$ also converges to $f(\hat{x})$.

Example

$f:\mathbb{X} \rightarrow \mathcal{M}$ is continuous, and $\mathbb{X}$ is compact then $f$ is uniform continuous on $\mathbb{X}$.

Proof

Since $f$ is continuous, $\forall x \in \mathbb{X}, \;\; \forall \delta > 0, \exists \varepsilon_x > 0$ such that $\left\| f(y) – f(x) \right\| < \delta$ implies that $y \in B^o(x, \varepsilon_x)$.
Since $\mathbb{X}$ is compact, $\{B^o(x, \varepsilon_x) \}_{x \in \mathbb{X}}$ covers $\mathbb{X}$ (i.e. $\bigcup_{x \in \mathbb{X}} B^o(x, \varepsilon_x) \supset \mathbb{X}$)
Moreover, Since $\mathbb{X}$ is compact, there exists a finite number of open covering, say $\{x_i\}_{i=1}^{k}$ such that $\bigcup_{i=1}^k B^o(x_i, \varepsilon_x) \supset \mathbb{X}$.
Then, pick $\varepsilon$ such that $\varepsilon = \underset{i=\{1 \cdots k \}}{min} \varepsilon_{x_i}$. It implies that $\varepsilon$ satisfies the property.

Fig05

what_it_iswhat_it_iswhat_it_is

Lemma : Continuous on Compact Set

$\mathbb{X} \subset \mathbb{R}^n$ is compact and $f:\mathbb{R}^n \rightarrow \mathbb{R}^m$ is continuous. It implies that $f(\mathbb{X}) = \{ y \in \mathbb{R}^m | y = f(x), x \in \mathbb{X}\} \subset \mathbb{R}^m$ is compact.
(직관적으로 당연하나, 이것의 증명을 위해서는 Contionus 와 Compact의 정의를 정확히 사용하여야 한다.)

Proof

  • $\mathbb{R}^n$ is compact means that it is closed and bounded.
  • Proof of Closed : Limit Point가 같은 Set에 있음을 보인다.
    It needs to prove that for any sequence $\{y_i \}_{i \in \mathbb{N}} \subset f(\mathbb{Z})$ converges to $\hat{y} \in f(\mathbb{X})$.

Since $\{y_i \} \subset f(\mathbb{X})$ for any $y_i \in f(\mathbb{X}), \exists x_i \in \mathbb{X}$ such that $y_i = f(x_i)$.
Since $\mathbb{X}$ is compact, there exists subsequence of $\{x_i \}_{i \in \mathbb{N}}$ such that $x_i \overset{\mathbb{K}}{\rightarrow} \hat{x}$ and $\hat{x} \in \mathbb{X}$.
Since $f$ is continuous $x_i \rightarrow \hat{X}$ implies that $f(x_i) \overset{\mathbb{K}}{\rightarrow} f(\hat{x})$
… 다시말해, $\hat{x}$ is a limit point, since if it is not $\{y_i\}$, it cannot be a convergence sequence.
then $f(x_i) \overset{\mathbb{K}}{\rightarrow} f(\hat{x}) \Leftrightarrow y_i \rightarrow \hat{y}$.

  • Proof of Bounded : 제한된 값을 가짐을 보인다.
    Suppose not, i.e. $\exists \{y_i \}_{i \in \mathbb{N}}$ such that $y_i \uparrow \infty$ as $i \rightarrow \infty$.
    Since $y_i \in f(\mathbb{x}), \;\; \exists x_i \in \mathbb{X}$ such that $x_i \rightarrow \hat{x} \Leftrightarrow f(x_i) \rightarrow f(\hat{x}) \Leftrightarrow y_i \rightarrow \hat{y}$, thus, $\exists i_0 \in \mathbb{N}$ such that $\left\| f(x_i) \right\| \leq \left\| f(\hat{x}) \right\| + 1 < \infty, \;\; \forall i \geq i_0$, It is contradict to assumption. Compact 가정에 어긋난다.

Derivative

Definition

$$
f'(t) = \lim_{\Delta t \rightarrow 0} \frac{f(t+\Delta t) – f(t)}{\Delta t} \Rightarrow \lim_{\Delta t \rightarrow 0} \frac{f(t+\Delta t) – f(t) – f'(t) \Delta t}{\Delta t} = 0$$

where $f:\mathbb{R} \rightarrow \mathbb{R}$.

Moreover, for $f:\mathbb{R}^n \rightarrow \mathbb{R}^m$, $f$ is differentiable at $x$ if $\exists Df(x)$ such that $Df(x) = J(x) \in \mathbb{R}^{m \times n}$ such that

$$
\lim_{ \left\|x \right\| \rightarrow 0} \frac{\left\|f(x + \Delta x) – f(x) – D f(x) \Delta x \right\|}{\left\|x \right\|} = 0$$

Example : Using Jacobian

Let $\Delta x = t \cdot e_i$

$$
\lim_{ \left\|x \right\| \rightarrow 0} \frac{\left\|f(x+ t e_i) – f(x) -t \cdot J(x) e_i \right\|}{|t|} = 0$$

where

$$
e_i = \begin{bmatrix}
0\\
0\\
\vdots\\
1\\
\vdots\\
0
\end{bmatrix} \rightarrow \text{i-th Column for indexing i-th row} \;\;\text{,so that}\;\;
J(x)e_i = \frac{\partial f}{\partial x_i} = \begin{bmatrix}
\frac{\partial f^1}{\partial x_i}\\
\frac{\partial f^2}{\partial x_i}\\
\vdots\\
\frac{\partial f^m}{\partial x_i}
\end{bmatrix} = J(x)_i$$

Taylor’s Formula

Suppose that $f:\mathbb{R}^n \rightarrow \mathbb{R}^m$ is continously differentiable (계속 미분 할 수 있다는 의미), then

$$
\exists y, x \in \mathbb{R}^n, \;\; f(y) – f(x) = \int_0^1 \frac{\partial f(x+ s(y-x))}{\partial x} \cdot (y-x) ds$$

Proof

Let $g(s) \triangleq f(x + s(y-x))$ such that $g(1) = y$, and $g(0)=x$. By assumption, $g(s)$ is differentiable since $f$ is continuouslu differntiable.

$$
\frac{dg(s)}{ds} = \frac{df(x + s(y-x))}{dx} \cdot (y-x)$$

(by Chain rule, $\frac{dg(s)}{ds} = \frac{df(X(s))}{dX(s)} \cdot \frac{dX(s)}{ds}, \;\; X(s) = x + s(y-x)$, Set $X(s)$ to be $x$)

$$
\begin{align*}
\int_0^1 \frac{dg(s)}{ds} \cdot ds&= \int_0^1 \frac{\partial f(x+s(y-x))}{\partial x}\cdot (y-x)ds\\
\Leftrightarrow g(1) – g(0) &= \int_0^1 \frac{\partial f(x+s(y-x))}{\partial x}\cdot (y-x)ds
\end{align*}$$

Twice Differentiable

Let $f:\mathbb{R}^n \rightarrow \mathbb{R}$ be a twice differentiable, then, for any $x, y \in \mathbb{R}^n$

$$
f(y) – f(x) = \langle \frac{\partial f(x)}{\partial x}, y-x \rangle + \int_0^1 (1-s) \langle y-x, \frac{\partial^2 f(x+s(y-x))}{\partial x^2}\cdot (y-x) \rangle ds$$

proof

Let $g(s) \triangleq f(x + s(y-x))$.
Then,

$$
g'(s) = \frac{df(x + s(y-x))}{dx}(y-x)$$

(where, $\frac{df(x + s(y-x))}{dx}$ is row vector, by definition of vector differential, and $(y-x)$ is coulumn vector.)
In addition,

$$
g”(s) = \langle (y-x), \frac{d^2f(x + s(y-x))}{dx^2}(y-x) \rangle$$

HW. $g”(s)$ 를 증명하라.

Then, Set

<

p class=”mathjax”>$$
(1-s)g”(s) = \frac{d}{ds}\left((1-s)g'(s) + g(s) \right)$$

(It is a technique !!)

$$
\begin{align*}
\int_0^1 (1-s)g”(s) ds &=
\int_0^1 \frac{d}{ds}\left((1-s)g'(s) + g(s) \right) ds \\
&= \int_0^1 d\left( (1-s)g'(s) + g(s) \right) \\
&= 0 \cdot g(s) + g(1) – g'(s) – g(0) \\
&= g(1) – g(0) – g'(s) \\
&= f(y) – f(x) – \langle \nabla f(x), y-x \rangle
\end{align*}$$

end of page

댓글 남기기