태그 보관물: Optimization

Foundation of Nonlinear Optimization-2

Foundation of Nonlinear Optimization-2

Definition : Locally Lipschitz Continuous

We say $f:\mathbb{R}^n \rightarrow \mathbb{R}^m$ is Locally Lipschitz continuous at $x$, such that

$$
\textit{If}\;\; \exists \rho > 0 \;\;\& \;\; L > 0 \;\;\textit{then} \;\; \forall y \in B^o(x, \rho), \\
\left\| f(x) – f(y) \right\| \leq L \cdot \left\| x – y\right\|$$

  • $x$ 근방의 미분치는 $L$ 보다 작다는 의미이며 꼭 미분 가능이 아니라도 성립한다.

Definition : Globally Lipschitz Continuous

$$
\textit{If} \;\; \exists L > 0\;\;\textit{such that}\;\; \forall x, y \in \mathbb{R}^n \\
\left\| f(x) – f(y) \right\| \leq L \cdot \left| x – y \right\|$$

Example

Globally Lipschitz Continuous가 성립하는 경우 Globally Lipschitz Continuous가 성립하지 않는 경우
Fig_03 Fig04

Convexity

Convex Sets

We say a set $A \subset \mathbb{R}^n$ is convex,
if every $x, y \in A$, the line connexting them is also in $A$. i.e.

$$
\forall x, y \in A, \;\; x + \lambda(y-x) \in A, \;\; \forall \lambda \in [0,1]$$

Definition : Convex Hull

Let $S \subset \mathbb{R}^n$, A convex hull, $coS$, is the smallest convex set containing the set $S$.
Fig_09

Theorem C-1

Let $S \subset \mathbb{R}^n$ . If $\bar{x} \in coS$ then there exist at most $n+1$ distinct points $\{x_i\}_{i=1}^{n+1}$ in $S$ such that $\bar{x}=\sum_{i=1}^{n+1} \mu^i x_i, \;\; \mu^i > 0, \;\sum_{i=1}^{n+1}\mu^i = 1$
Fig10
두 점으로는 이렇게 만들기 어렵다는 것을 의미한다. 즉, 볼록 다항식이 Convex Set 안에 정의될 수 있음을 의미한다.

Definition C-1

Consider a set

$$
C_s = \{ x \in \mathbb{R}^n | x=\sum_{i=1}^{k_x} \mu_i x_i, \;\; x_i \in S, \;\; \mu_i \geq 0, \;\; k_x \in \mathbb{N}, \;\; \sum_{i=1}^{k_x} \mu_i = 1\}$$

Lemma C-1

$C_s = coS$

Proof of Lemma

  1. $C_s \supset coS$
  2. $C_s \subset coS$
    1, 2를 증명해야 한다.
proof of $C_s \supset coS$

For any $x’, x” \in S$, and $\bar{x} \in coS$ such that

$$
x’ + \lambda(x” – x’) = (1-\lambda)x’ + \lambda x” \in C_s \;\; \forall \lambda \in [0,1]$$

(i.e. $\bar{x} = x’ + \lambda(x” – x’)$
Since $\mu_1 = 1 – \lambda \geq 0$, $\mu_2 = \lambda \geq 0$, then $\mu_1 + \mu_2 = 1$. It implies that $C_s \supset coS$ (Since $S \subset coS$) by definitionof $C_s$.

이를 통해 $C_s$가 Convex임이 증명되며 동시에 $coS$$S$의 smallest convex 이므로 $C_s \supset coS$ 이다.

proof of $C_s \subset coS$

Pick any $ x \in C_s$, i.e. $ x = \sum_{i=1}^{k_x} \mu^i x_i $.
Since $x_i \in S \subset coS$ and

$$
\begin{align*}
x &= \mu^{k_x} x_k + \sum_{i=1}^{k_x – 1} \mu^i x_i
= (1 – \sum_{i=1}^{k_x – 1} \mu^i) x_k + \sum_{i=1}^{k_x – 1} \mu^i x_i \\
&= \sum_{i=1}^{k_x – 1} \left( (1 – \mu^i)x_k + \mu^i x_i \right) – (k_x – 2) x_k
\end{align*}$$

Set $x_k^c \in coS$ such that $x_k^c = (1 – \mu^i)x_k + \mu_i x_i$

$$
x = \sum_{i=1}^{k_x – 1} x_k^c – (k_x -2)x_k$$

Let new parameter $\bar{\mu}^i$ for $x_k^c$ to be 1 for all $i \leq kx -1$ and $\bar{\mu}^{k_x} = -k_x + 2$. Since the sum of the new parameter $\bar{\mu}^i$ is $\sum_{i=1}^{k_x} \mu^i = k_x – 1 – k_x + 2 = 1$, the $x$ is still in $C_s$ and also in $coS$. Thus, $C_s \subset coS$.

Q.E.D of Lemma

Proof of Theorem

Since $\bar{x} \in coS = C_s$, $\exists k$ and $\mu_i$ such that $\bar{x} = \sum_{i=1}^k \mu^i x_i$, where $x_i \in S$, $\mu^i \geq 0$, and $\sum_{i=1}^k \mu^i = 1$.
Set the above condition as to be

$$
\sum_{i=1}^k \mu^i
\begin{bmatrix}
x_i \\
1
\end{bmatrix}
=
\begin{bmatrix}
\bar{x} \\
1
\end{bmatrix} \tag{1}$$

Since $\{ x_i\}_1^k \subset \mathbb{R}^n $ and $k > n+1$, $\{ x_i\}_1^k$ are linear dependent.
Since the vector made by the sequence is linear dependent, there exist $\{ \alpha_i\}_{i=1}^k$ such that

$$
\sum_{i=1}^k \alpha^i
\begin{bmatrix}
x_i \\
1
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0
\end{bmatrix} \tag{2}$$

(1) + (2) $\times \theta$ for some $\theta$, we can obtain

$$
\sum_{i=1}^k (\mu^i + \theta \alpha^i )
\begin{bmatrix}
x_i \\
1
\end{bmatrix}
=
\begin{bmatrix}
\bar{x} \\
i
\end{bmatrix}$$

Since there is $i$ such that $\alpha^i < 0$, there exists $\bar{\theta} > 0$ such that $\mu^i + \bar{\theta} \alpha^i = 0$, and $\mu^j + \bar{\theta} \alpha^j > 0. \; i \ne j$
결국 $\bar{\theta}$를 잘 선택하면 하나의 component가 사라진다. 그래도 위 방정식은 성립한다.

We have at most $k-1$ nonzero $\mu^j + \bar{\theta} \alpha^j$ and $\sum_j (\mu^j + \bar{\theta}\mu^j) = 1$ and $\sum_j (\mu^j + \bar{\theta}\mu^j) > 0$.
Keep doing this intil $k=n+1$.

Q.E.D of Theorem

Hyper Plane

Definition : Hyper Plane

$S_1, S_2$ be any sets in $\mathbb{R}^n$, we say that the Hyper Plane

$$
H = \{ x \in \mathbb{R}^n | \langle x, v\rangle = \alpha \}.$$

where $\alpha \in \mathbb{R}, \;\; v \in \mathbb{R}^n$ are given.
Seperate $S_1$ and $S_2$, if

$$
\begin{align}
\langle x, v \rangle &\geq \alpha, \;\; \forall x \in S_1\\
\langle x, v \rangle &\leq \alpha, \;\; \forall x \in S_2
\end{align}$$

Fig11

Theorem H-1

Let $S_1$ and $S_2$ be compact and convex sets in $\mathbb{R}^n$. Suppose that $S_1 \cap S_2 = \emptyset$, then there exists a hyper plane which seperate $S_1$ and $S_2$.

Lemma H-1

Let $S$ be a compact and convex subset of $\mathbb{R}^n$. Suppose that $O \notin S$. Let $\hat{x} = \arg \min \{||x|| | x \in S \}$, then $\forall x \in S, \langle x – \hat{x}, \hat{x} \rangle \geq 0$.

Proof of Lemma H-1

$$
x(\lambda) = \hat{x} + \lambda(x – \hat{x}) \;\; \lambda \in [0,1], \; \textit{and}\; x \in S$$

Since $\hat{x} = \arg \min \{||x|| | x \in S \}$, $\forall \lambda \in [0,1], \;\; \left\| x(\lambda) \right\|^2 \geq \left\| \hat{x} \right\|^2$.
Accordingly,

$$
\langle \hat{x} + \lambda (x – \hat{x}), \hat{x} + \lambda (x – \hat{x}) \rangle = \left\| \hat{x} \right\|^2 + 2 \lambda \langle x – \hat{x}, \hat{x} \rangle + \lambda^2 \left\| x – \hat{x} \right\| \geq \left\| \hat{x} \right\|^2 \\
\Leftrightarrow 2 \lambda \langle x – \hat{x}, \hat{x} \rangle + \lambda^2 \left\| x – \hat{x} \right\| \geq 0 \\
\Leftrightarrow \langle x – \hat{x}, \hat{x} \rangle \geq \frac{1}{2} \lambda \left\| x – \hat{x} \right\|$$

Let $\lambda \rightarrow 0$, then $\langle x – \hat{x}, \hat{x} \rangle \geq 0$
Q.E.D pf Lemma H-1

Proof of Thorem H-1

Let

$$
C = S_1 – S_2 \triangleq \{ x \in \mathbb{R}^n | x = x_1 – x_2, \; x_1 \in S_1, x_2 \in S_2\}$$

Since $S_1 \cap S_2 = \emptyset$ and $C$ is convex and comapct (But it is not proven.!!)

Lemma H-2

$C$ is convex

Proof of Lemma H-2

다음을 증명하는 것이다.

$$
\forall y_1, y_2 \in C \Rightarrow \lambda y_1 + (1-\lambda)y_2 \in C$$

따라서 다음과 같이 $x_{11} \in S_1,\;\; x_{12} \in S_2$를 가정하자.

$$
\begin{align}
y_1 \in C &\Rightarrow \exists x_{11} \in S_1, \;\ x_{12} \in S_2 \;\; \textit{such that} \;\; x_{11} – x_{12} = y_1 \\
y_2 \in C &\Rightarrow \exists x_{21} \in S_1, \;\ x_{22} \in S_2 \;\; \textit{such that} \;\; x_{21} – x_{22} = y_2
\end{align}$$

The above equation implies that

$$
\begin{align}
\lambda y_1 + (1-\lambda) y_2
&= \lambda (x_{11} – x_{12}) + (1 – \lambda )(x_{21} – x{22}) \\
&= \lambda x_{11} + (1 – \lambda )x_{21} – \left( \lambda x_{12} + (1 – \lambda)x_{22}\right) \in C
\end{align}$$

Since

$$
\begin{align}
\lambda x_{11} + (1 – \lambda )x_{21} \in S_1 \\
\lambda x_{12} + (1 – \lambda )x_{22} \in S_2
\end{align}$$

Hence, $C$ is convex.
Q.E.D. of Lemma H-2

Lemma H-3

$C$ is compact

Proof of Lemma H-3
Bound

(It is obvious. 다음을 증명하는 것이다.)
$\exists M < \infty$ such that $\forall y \in C$, $\left\| y \right\| \leq M$.

Since $S_1, S_2$ is compact $\exists M_1, M_2 < \infty$ such that $\left\| x_1 \right\| \leq M_1, \forall x_1 \in S_1$ and $\left\| x_2 \right\| \leq M_2, \forall x_2 \in S_2$.

$y \in C$ implies that $\exists x_1 \in S_1, x_2 \in S_2$ such that $y = x_1 – x_2$
Thus,

$$
\left\| y \right\| \leq \left\| x_1 \right\| + \left\| x_2 \right \| \leq M_1 + M_2$$

Closed

Pick any convergent sequence $\{ y_i \}_{i=1}^{\infty} \subset C, \; y_i \rightarrow \bar{y}$ 이어서 $\bar{y} \in C$ 임을 증면하는 것이다.

Since $S_1, S_2$ is compact,

$$
\exists \{x_{i_1} \}_{i_1=1}^{\infty} \subset S_1, \; \{x_{i_2} \}_{i_2=1}^{\infty} \subset S_2$$

Since $y_i = x_{i_1} – x_{i_2}$ and $x_{i_1} \rightarrow \bar{x_1}$ and $x_{i_2} \rightarrow \bar{x_2}$, there exists $\bar{y} \in C$.
Q.E.D. of Lemma H-3

Continue to proof of Thorem H-1

Let $\hat{z} = \arg \min \left\{ \left\| z \right\| | z \in C \right\}$ where $\hat{z} = \frac{1}{2} (x_2 – x_1)$ for $x_1, x_2$ is satisfying $\arg \min \{x_1, x_2 | \left\| x_1 – x_2 \right\| \}$

from the Lemma H-1

$$
\langle x_1 – \hat{z}, \hat{z} \rangle = \langle x_1, \hat{z} \rangle – \left\| \hat{z} \right\|^2 \geq 0 \Rightarrow \langle x_1, \hat{z} \rangle \geq \left\| \hat{z} \right\|^2 \tag{3}$$

$\hat{z}$의 정의에 의해 (and $O \notin C$)

<

p class=”mathjax”>$$
\langle \hat{z} – x_2, \hat{z} \rangle = \left| \hat{z} \right|^2 – \langle x_2, \hat{z} \rangle \geq 0 \Rightarrow \langle x_2, \hat{z} \rangle \leq \left| \hat{z} \right|^2$$

Q.E.D. of Theorem H-1
Fig12